材料科学
电池(电)
结构材料
压力(语言学)
结构完整性
复合材料
热的
结构变化
电压
结构稳定性
储能
热膨胀
核工程
汽车工程
结构工程
电气工程
热力学
功率(物理)
宏观经济学
经济
哲学
工程类
物理
语言学
作者
Chunzhi Du,Shaoqian Zhu
标识
DOI:10.1142/s1793604724510251
摘要
Carbon fiber structural batteries, which combine structural and functional properties, have good energy storage capacity while bearing loads have received attention from scholars at home and abroad in recent years as a new type of energy storage device. However, in the process of use, temperature changes will lead to the occurrence of thermal stresses, which may cause structural failure under multiple cycles. In this paper, the thermal-stress coupled model of structural batteries was established first using the temperature and thermal stress models of structural batteries, considering the heat exchange with the external environment of structural batteries. Then based on the coupled model, the thermal stress in the structural battery was simulated and analyzed in COMSOL considering different charge and discharge rates and ambient temperatures of the structural batteries. The results show that: (1) The higher the charging and discharging rates, the higher the temperature of the structural battery, resulting in greater thermal stress. (2) The higher the ambient temperature of the structural battery, the longer its discharge time and the lower the voltage at which discharge terminates, which is beneficial for the electrochemical performance of the battery. But the higher the ambient temperature, the greater the temperature change inside the structural battery, which is not conducive to the mechanical performance of the structural battery. This study can provide reference for the safety analysis of structural batteries in thermal environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI