A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:8
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳风华完成签到,获得积分10
刚刚
刚刚
慕青应助眼睛大的尔竹采纳,获得10
1秒前
pumpkin完成签到 ,获得积分10
3秒前
仁爱煜祺完成签到,获得积分10
3秒前
mumu完成签到,获得积分10
3秒前
JHcHuN发布了新的文献求助10
3秒前
SciGPT应助诚心的寻凝采纳,获得10
3秒前
sun完成签到,获得积分10
4秒前
乐乐应助酷酷珠采纳,获得10
4秒前
俭朴的天曼完成签到,获得积分10
5秒前
上官若男应助北佳采纳,获得10
5秒前
5秒前
02发布了新的文献求助10
6秒前
研友_8yPX4Z完成签到,获得积分10
6秒前
7秒前
8秒前
暮霭沉沉应助慈祥的孤兰采纳,获得10
9秒前
9秒前
quhayley应助小狐狸采纳,获得10
9秒前
程程程发布了新的文献求助10
9秒前
10秒前
zhangkaixin完成签到,获得积分10
10秒前
大模型应助lvben采纳,获得10
10秒前
10秒前
五个小白发布了新的文献求助10
11秒前
小高发布了新的文献求助10
11秒前
念姬完成签到,获得积分10
12秒前
evak发布了新的文献求助10
12秒前
14秒前
15秒前
夏天不回来完成签到,获得积分10
15秒前
FG发布了新的文献求助10
15秒前
研友_LkYKJZ完成签到,获得积分10
15秒前
充电宝应助NN采纳,获得10
15秒前
15秒前
Jerry20184完成签到 ,获得积分10
15秒前
15秒前
addeoo发布了新的文献求助10
16秒前
nimo完成签到 ,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806177
关于积分的说明 7868353
捐赠科研通 2464650
什么是DOI,文献DOI怎么找? 1311885
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601880