A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:110: 102094-102094 被引量:30
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助cyd2007cyd采纳,获得10
刚刚
东东发布了新的文献求助10
刚刚
吨吨喝水完成签到,获得积分10
刚刚
1秒前
爆米花应助mengyijie2采纳,获得10
1秒前
瑞123456完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
1秒前
木木彡完成签到 ,获得积分10
2秒前
3秒前
葡萄完成签到,获得积分10
3秒前
药石无医发布了新的文献求助10
3秒前
药石无医发布了新的文献求助10
3秒前
Sicecream完成签到,获得积分10
4秒前
4秒前
4秒前
今后应助小福采纳,获得10
5秒前
5秒前
矮小的幼枫完成签到,获得积分10
5秒前
6秒前
seven完成签到,获得积分10
6秒前
6秒前
6秒前
Ortho Wang发布了新的文献求助10
7秒前
董昌铭完成签到 ,获得积分10
7秒前
7秒前
酷酷的安柏完成签到,获得积分10
7秒前
seven发布了新的文献求助10
9秒前
9秒前
调皮的安波完成签到,获得积分10
9秒前
虚幻颖完成签到,获得积分10
9秒前
wwww发布了新的文献求助10
9秒前
9秒前
昌平奶牛完成签到 ,获得积分10
10秒前
东东完成签到,获得积分10
10秒前
汉堡包应助风清扬采纳,获得10
10秒前
白衣修身发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144