A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:40
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JOHNLJY发布了新的文献求助10
刚刚
刚刚
汤圆发布了新的文献求助10
1秒前
羽柒er发布了新的文献求助10
1秒前
1秒前
寻菡发布了新的文献求助10
1秒前
ZhangR发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
LSY完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
天天快乐应助pterionGao采纳,获得10
6秒前
7秒前
JOHNLJY完成签到,获得积分10
7秒前
古月发布了新的文献求助10
7秒前
李大帅完成签到,获得积分10
9秒前
goosnake发布了新的文献求助10
9秒前
小二郎应助猪猪hero采纳,获得30
9秒前
羽柒er完成签到,获得积分10
9秒前
BIGDUCK发布了新的文献求助200
10秒前
小欣完成签到,获得积分10
10秒前
ZhangR完成签到,获得积分10
10秒前
wengi94完成签到,获得积分10
10秒前
13秒前
wanci应助消费折扣999采纳,获得10
13秒前
13秒前
13秒前
念0完成签到 ,获得积分10
14秒前
15秒前
15秒前
桐桐应助蹦蹦又跳跳采纳,获得10
16秒前
16秒前
交大市长完成签到,获得积分10
17秒前
布枕头发布了新的文献求助10
18秒前
goosnake完成签到,获得积分20
18秒前
甜甜的忆彤完成签到 ,获得积分20
18秒前
刘亦菲暧昧对象完成签到 ,获得积分10
18秒前
18秒前
汉堡包应助热情十三采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416