A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:110: 102094-102094 被引量:30
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xu完成签到,获得积分10
刚刚
天线宝宝完成签到,获得积分10
1秒前
酒梅子完成签到,获得积分20
1秒前
1秒前
汉堡包应助中级中级采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
岁岁完成签到 ,获得积分10
4秒前
4秒前
bob完成签到,获得积分10
5秒前
5秒前
6秒前
寇砖发布了新的文献求助10
7秒前
asd00发布了新的文献求助10
7秒前
复杂从梦完成签到,获得积分10
7秒前
xiao黑发布了新的文献求助10
8秒前
990723发布了新的文献求助10
8秒前
8秒前
8秒前
川川完成签到,获得积分10
8秒前
沙青梦发布了新的文献求助10
8秒前
9秒前
chensiying发布了新的文献求助10
10秒前
lilili应助青医第一深情采纳,获得10
11秒前
咖啡发布了新的文献求助10
11秒前
Keyan发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
昏睡的以南完成签到 ,获得积分10
13秒前
14秒前
sss发布了新的文献求助10
14秒前
xiao黑完成签到,获得积分10
14秒前
zz123发布了新的文献求助10
14秒前
15秒前
嗜睡性粒细胞完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177058
求助须知:如何正确求助?哪些是违规求助? 4365829
关于积分的说明 13593355
捐赠科研通 4215842
什么是DOI,文献DOI怎么找? 2312284
邀请新用户注册赠送积分活动 1311047
关于科研通互助平台的介绍 1259242