A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:40
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Engen完成签到,获得积分10
刚刚
刚刚
晨晨完成签到,获得积分10
2秒前
可靠靖琪发布了新的文献求助10
2秒前
halabouqii发布了新的文献求助10
3秒前
guyuangyy发布了新的文献求助10
4秒前
GarrickO发布了新的文献求助50
4秒前
setmefree发布了新的文献求助10
5秒前
番茄完成签到,获得积分10
8秒前
9秒前
咸鸭蛋完成签到 ,获得积分10
9秒前
11秒前
冯嘉萌完成签到,获得积分20
12秒前
科目三应助暖羊羊Y采纳,获得10
13秒前
13秒前
13秒前
大蜥蜴完成签到,获得积分10
14秒前
丰D完成签到,获得积分10
14秒前
14秒前
Jackylee完成签到,获得积分10
15秒前
15秒前
15秒前
taizhi完成签到,获得积分10
15秒前
天真的冰巧完成签到,获得积分10
17秒前
任性一兰完成签到,获得积分20
17秒前
shinian发布了新的文献求助10
17秒前
小许小许完成签到,获得积分10
17秒前
情怀应助Will采纳,获得10
17秒前
LIU完成签到 ,获得积分10
18秒前
华仔应助zg采纳,获得10
19秒前
19秒前
19秒前
zeena完成签到,获得积分10
19秒前
20秒前
麦子完成签到 ,获得积分10
20秒前
英俊的铭应助lan采纳,获得10
21秒前
xiao发布了新的文献求助20
21秒前
小星星完成签到,获得积分10
22秒前
火狐狸kc完成签到,获得积分10
22秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572