A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:110: 102094-102094 被引量:12
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愿从欢完成签到,获得积分10
刚刚
1秒前
1秒前
wweq完成签到,获得积分10
2秒前
骆十八发布了新的文献求助10
2秒前
4秒前
Alex驳回了Andy应助
5秒前
5秒前
坦率不惜发布了新的文献求助10
7秒前
愉快秀发布了新的文献求助10
9秒前
似鱼是于无所求完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
Cloud完成签到,获得积分0
14秒前
14秒前
黑白和完成签到 ,获得积分10
15秒前
腼腆的缘分完成签到,获得积分10
16秒前
情怀应助su采纳,获得10
16秒前
16秒前
蒺藜完成签到 ,获得积分10
17秒前
iui飞发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
稻草人完成签到,获得积分10
19秒前
奥利奥完成签到,获得积分10
20秒前
21秒前
22秒前
奥利奥发布了新的文献求助10
23秒前
布施德完成签到 ,获得积分10
24秒前
脸小呆呆发布了新的文献求助10
24秒前
zmx1025发布了新的文献求助10
24秒前
24秒前
钱仍城发布了新的文献求助10
25秒前
26秒前
N型半导体发布了新的文献求助10
27秒前
rainkz发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999708
求助须知:如何正确求助?哪些是违规求助? 3539157
关于积分的说明 11276003
捐赠科研通 3277850
什么是DOI,文献DOI怎么找? 1807761
邀请新用户注册赠送积分活动 884191
科研通“疑难数据库(出版商)”最低求助积分说明 810142