A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:40
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖访冬完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
懒羊羊发布了新的文献求助10
1秒前
PORCO完成签到,获得积分10
1秒前
rainbow完成签到,获得积分10
2秒前
谷中青完成签到,获得积分10
2秒前
漆漆发布了新的文献求助10
3秒前
3秒前
虚拟的酒窝完成签到,获得积分10
3秒前
微笑驳完成签到,获得积分10
4秒前
欣喜访枫发布了新的文献求助10
4秒前
橙子是不是完成签到,获得积分10
4秒前
Owen应助KarlYu采纳,获得10
4秒前
JYCKLTY完成签到,获得积分10
4秒前
陌陌发布了新的文献求助10
4秒前
陆程文完成签到,获得积分10
5秒前
5秒前
lily完成签到,获得积分10
5秒前
万万想到了完成签到,获得积分10
5秒前
刘林美完成签到 ,获得积分10
5秒前
羊小受发布了新的文献求助10
6秒前
Ava应助桂花酒酿采纳,获得10
6秒前
橘寄发布了新的文献求助10
6秒前
ding应助123采纳,获得10
6秒前
7秒前
7秒前
搜集达人应助聪明小黄采纳,获得10
8秒前
xzl完成签到 ,获得积分0
8秒前
sookie完成签到 ,获得积分10
8秒前
瘦瘦的枫叶完成签到 ,获得积分10
9秒前
星辰大海应助mengna采纳,获得10
9秒前
9秒前
9秒前
大花卷完成签到,获得积分10
9秒前
布丁仔完成签到,获得积分10
10秒前
fanfan完成签到,获得积分10
10秒前
10秒前
怀先生完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006