A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:40
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Only完成签到 ,获得积分10
刚刚
852应助呱瓜捏采纳,获得30
2秒前
炙热忆文发布了新的文献求助10
3秒前
爱我不上火完成签到 ,获得积分10
3秒前
今后应助糊糊涂涂采纳,获得10
3秒前
3秒前
程破茧完成签到,获得积分10
4秒前
Fizzes发布了新的文献求助10
4秒前
jtksbf完成签到 ,获得积分10
5秒前
牛马刘完成签到,获得积分10
5秒前
糊涂塌客完成签到,获得积分10
5秒前
宁宁宁12138完成签到,获得积分10
6秒前
charon完成签到 ,获得积分10
6秒前
fxx完成签到,获得积分10
7秒前
程破茧发布了新的文献求助10
7秒前
9秒前
9秒前
fxx发布了新的文献求助30
10秒前
传奇3应助Fizzes采纳,获得10
11秒前
爆米花应助宁宁宁12138采纳,获得10
11秒前
苗条海瑶完成签到 ,获得积分20
12秒前
邓布利利发布了新的文献求助10
13秒前
xiaolaoshu发布了新的文献求助10
13秒前
Hina完成签到,获得积分0
14秒前
Ethanyoyo0917完成签到,获得积分10
14秒前
淇淇完成签到,获得积分10
14秒前
JiaMX应助关畅澎采纳,获得10
16秒前
16秒前
昏睡的人完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
zxx发布了新的文献求助10
23秒前
明理的踏歌完成签到,获得积分10
24秒前
zqlxueli完成签到 ,获得积分0
25秒前
lllllria发布了新的文献求助200
26秒前
29秒前
rechristal完成签到,获得积分10
29秒前
30秒前
华仔应助ttl采纳,获得10
30秒前
hu完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539603
求助须知:如何正确求助?哪些是违规求助? 4626418
关于积分的说明 14599161
捐赠科研通 4567232
什么是DOI,文献DOI怎么找? 2503948
邀请新用户注册赠送积分活动 1481684
关于科研通互助平台的介绍 1453312