A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:110: 102094-102094 被引量:40
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7788完成签到,获得积分10
刚刚
ww发布了新的文献求助10
1秒前
1秒前
2秒前
ddd发布了新的文献求助10
3秒前
asteria211发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
丰富的冰棍完成签到 ,获得积分10
4秒前
上官若男应助潇淼采纳,获得10
5秒前
6秒前
票子完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
heisebeileimao应助LKT采纳,获得10
6秒前
7秒前
犹豫的寄云完成签到,获得积分10
8秒前
8秒前
张琳发布了新的文献求助10
9秒前
9秒前
meng完成签到,获得积分20
9秒前
子车茗应助lihaichuan采纳,获得50
10秒前
赵yy应助底色采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
111完成签到,获得积分10
10秒前
忠诚卫士完成签到,获得积分10
10秒前
10秒前
dcy发布了新的文献求助10
11秒前
NEO完成签到 ,获得积分10
11秒前
zcs完成签到,获得积分10
12秒前
徐涛完成签到 ,获得积分10
13秒前
lolos发布了新的文献求助10
13秒前
13秒前
13秒前
jagger发布了新的文献求助10
13秒前
嘟嘟嘟cpu完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490563
求助须知:如何正确求助?哪些是违规求助? 4589061
关于积分的说明 14423410
捐赠科研通 4521097
什么是DOI,文献DOI怎么找? 2477169
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329