Multi-view orientational attention network combining point-based affinity for polyp segmentation

计算机科学 分割 人工智能 编码器 棱锥(几何) 空间语境意识 背景(考古学) 方向(向量空间) 计算机视觉 模式识别(心理学) 数学 几何学 古生物学 生物 操作系统
作者
Yan Liu,Yan Yang,Yongquan Jiang,Zhuyang Xie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123663-123663 被引量:3
标识
DOI:10.1016/j.eswa.2024.123663
摘要

Most existing deep learning-based polyp segmentation methods neglect two important aspects of polyps: the geometric orientation information of polyps and the point information of the entire colonoscopy area. In this paper, we introduce a multi-view orientational attention network (MVOA-Net), which incorporates orientation and point awareness to effectively address the issue of intra-class inconsistency resulting from variations in polyp shape, size, and position, as well as the inter-class indistinction caused by the high similarity between polyp lesions and surrounding tissues. To achieve robust orientation awareness, we propose a novel geometric orientation transformer encoder (GOTE) based on horizontal and vertical views. Moreover, To simultaneously capture the global context information of GOTE and emphasize the important local information of the convolution-based attention encoder (CBAE), a global and local cross attention fusion module (CAFM) is also proposed to simultaneously model the long-range dependencies of polyps and pay sufficient attention to the local boundaries of polyps. Additionally, a efficient atrous spatial pyramid pooling (E-ASPP) module is proposed to enhance the semantic representation of high-level features. Finally, a point-based affinity module (PBAM) and a multi-scale fusion module (MSFM) are proposed to distinguish the disguise of polyps, further alleviating inter-class indistinction. The ablation study results demonstrate the effectiveness of each component. Quantitative and qualitative experimental results show that MVOA-Net achieves the best segmentation accuracy across domain polyp datasets and has obvious advantages in segmenting multiple polyp objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
重要初翠发布了新的文献求助10
1秒前
3秒前
完美世界应助如意2023采纳,获得10
4秒前
汐颜完成签到,获得积分10
4秒前
研友_VZG7GZ应助简易采纳,获得30
4秒前
神凰发布了新的文献求助10
6秒前
小白鼠hai完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
科研通AI2S应助夏大雨采纳,获得30
9秒前
英俊绿海完成签到 ,获得积分10
10秒前
SciGPT应助如意飞雪采纳,获得20
12秒前
梁嘉琦发布了新的文献求助30
14秒前
打打应助yy采纳,获得10
14秒前
SYLH应助SB采纳,获得10
17秒前
传奇3应助SB采纳,获得10
17秒前
科研通AI2S应助SB采纳,获得10
17秒前
科研通AI2S应助SB采纳,获得10
17秒前
sissiarno应助SB采纳,获得30
17秒前
Lwf_应助SB采纳,获得10
17秒前
17秒前
17秒前
TT完成签到 ,获得积分10
18秒前
妮子沐完成签到,获得积分20
18秒前
科研通AI2S应助111采纳,获得10
19秒前
可爱的小树苗完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
23秒前
彤酱完成签到,获得积分20
23秒前
cyy完成签到,获得积分10
24秒前
24秒前
JQ发布了新的文献求助10
24秒前
alex发布了新的文献求助10
24秒前
naturehome发布了新的文献求助10
26秒前
ceeray23应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
zhendou应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465585
求助须知:如何正确求助?哪些是违规求助? 3058692
关于积分的说明 9062766
捐赠科研通 2749086
什么是DOI,文献DOI怎么找? 1508305
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696557