Multi-view orientational attention network combining point-based affinity for polyp segmentation

计算机科学 分割 人工智能 编码器 棱锥(几何) 空间语境意识 背景(考古学) 方向(向量空间) 计算机视觉 模式识别(心理学) 数学 几何学 古生物学 生物 操作系统
作者
Yan Liu,Yan Yang,Yongquan Jiang,Zhuyang Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123663-123663 被引量:3
标识
DOI:10.1016/j.eswa.2024.123663
摘要

Most existing deep learning-based polyp segmentation methods neglect two important aspects of polyps: the geometric orientation information of polyps and the point information of the entire colonoscopy area. In this paper, we introduce a multi-view orientational attention network (MVOA-Net), which incorporates orientation and point awareness to effectively address the issue of intra-class inconsistency resulting from variations in polyp shape, size, and position, as well as the inter-class indistinction caused by the high similarity between polyp lesions and surrounding tissues. To achieve robust orientation awareness, we propose a novel geometric orientation transformer encoder (GOTE) based on horizontal and vertical views. Moreover, To simultaneously capture the global context information of GOTE and emphasize the important local information of the convolution-based attention encoder (CBAE), a global and local cross attention fusion module (CAFM) is also proposed to simultaneously model the long-range dependencies of polyps and pay sufficient attention to the local boundaries of polyps. Additionally, a efficient atrous spatial pyramid pooling (E-ASPP) module is proposed to enhance the semantic representation of high-level features. Finally, a point-based affinity module (PBAM) and a multi-scale fusion module (MSFM) are proposed to distinguish the disguise of polyps, further alleviating inter-class indistinction. The ablation study results demonstrate the effectiveness of each component. Quantitative and qualitative experimental results show that MVOA-Net achieves the best segmentation accuracy across domain polyp datasets and has obvious advantages in segmenting multiple polyp objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
个性宝马应助WYF采纳,获得20
2秒前
4秒前
隐形曼青应助江蹇采纳,获得10
4秒前
DM完成签到,获得积分10
4秒前
meimei完成签到,获得积分20
5秒前
CodeCraft应助吃花生酱的猫采纳,获得10
5秒前
zhurui完成签到 ,获得积分10
6秒前
EW发布了新的文献求助10
6秒前
7秒前
7秒前
DM发布了新的文献求助10
8秒前
zhxs发布了新的文献求助10
11秒前
hh发布了新的文献求助10
12秒前
叶赛文发布了新的文献求助100
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
完美世界应助DaiTing采纳,获得10
16秒前
SciGPT应助luckily采纳,获得10
16秒前
17秒前
17秒前
18秒前
包容秋荷发布了新的文献求助10
20秒前
22秒前
英姑应助hh采纳,获得10
22秒前
小宋发布了新的文献求助10
22秒前
新火发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019