Exceptional ductility through interface-constrained grain growth for the ultrafine-scale Ni/Ni-W layered composites

材料科学 粒度 延展性(地球科学) 复合材料 纳米 极限抗拉强度 应变硬化指数 纳米尺度 纳米技术 蠕动
作者
Fei Liang,Zhe-Xuan Wang,Mei-Yue Li,Bin Zhang,Xue-Mei Luo,Xiaofei Zhu,Guangping Zhang
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:176: 103959-103959 被引量:9
标识
DOI:10.1016/j.ijplas.2024.103959
摘要

Enhancing the strength of metallic laminates through decreasing the constituent layer thickness from micrometer to nanometer scale is usually accompanied by the degradation of ductility because plastic instability characterized by fatal shear bands inevitably occurs in the early stage of deformation. To overcome the strength-ductility trade-off dilemma, we designed a kind of metallic layered composites (LCs) consisting of nano-grained Ni (grain size: 21-37 nm) and ultrafine nano-grained Ni-W (grain size: 8 nm) constituent layers with layer thickness ranging from microns to tens of nanometers. We found that the strength and ductility of Ni/Ni-W LCs can be simultaneously enhanced by decreasing the layer thickness. Interface-constrained grain growth in the Ni layers with an initial layer thickness of less than 1 μm enhances strain hardening ability. Thus, strain delocalization characterized by the formation of rectangular strain zones instead of crossed micro shear bands appears in the LCs. Based on the above mechanism, we obtained the optimum ratio of the layer thickness to the grain size for the nano-grained Ni layers as about 15:1, which corresponds to Ni0.25/Ni-W0.025 LCs with the highest tensile strength (1.9 GPa) and elongation to failure (5.5%). These findings may provide a new path for the design principle of metallic LCs with multi-level microstructural and geometrical scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
值雨应助科研通管家采纳,获得10
1秒前
Churchill87426完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
annafan应助科研通管家采纳,获得10
1秒前
jade应助科研通管家采纳,获得10
1秒前
科研通AI2S应助qh采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
聪慧凡蕾应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得50
1秒前
1秒前
2秒前
Junly完成签到 ,获得积分10
2秒前
充电宝应助铠甲勇士采纳,获得10
4秒前
木森完成签到,获得积分10
6秒前
zxy发布了新的文献求助10
7秒前
9秒前
9秒前
czxchase发布了新的文献求助10
10秒前
朱陪完成签到,获得积分10
10秒前
星星轨迹发布了新的文献求助10
15秒前
zxy完成签到,获得积分10
19秒前
小二郎应助czxchase采纳,获得10
20秒前
rosee发布了新的文献求助10
20秒前
星辰大海应助凯文采纳,获得10
20秒前
21秒前
22秒前
22秒前
顽强的小刘应助科研dog采纳,获得10
24秒前
冰红茶发布了新的文献求助10
25秒前
竹zzz完成签到,获得积分10
25秒前
zoie0809发布了新的文献求助10
26秒前
jisujun发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792