Ensemble learning based hierarchical surrogate model for multi-fidelity information fusion

替代模型 忠诚 计算机科学 机器学习 特征工程 人工智能 利用 特征(语言学) 集合预报 数据挖掘 深度学习 计算机安全 语言学 电信 哲学
作者
Yitang Wang,Yong Pang,Tianhang Xue,Shuai Zhang,Xueguan Song
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102535-102535 被引量:2
标识
DOI:10.1016/j.aei.2024.102535
摘要

Recently, multi-fidelity information fusion based surrogate modeling methods have made great progress in the engineering design and optimization tasks. Two main issues in this field are: (1) Since the overarching trend of the responses from the high-fidelity (HF) model is captured by the low-fidelity (LF) model, inaccurate LF model may negatively impact the final modeling results. (2) The responsiveness of multi-fidelity surrogate (MFS) models to variations in the relationship between LF and HF models leads to limited prediction performance. To this end, we propose an ensemble learning based MFS modeling method with a hierarchical framework, called EL-MFS. Specifically, to alleviate the impact of issue (1), we present an adaptive ensemble surrogate model, which aims to effectively mitigate the negative impact of inappropriate LF model selection on the HF approximation results. Furthermore, we propose to exploit the feature mapping and hierarchical framework to boost the versatility of the model as a way to mitigate the dependence of MFS performance on the relationship between HF and LF models. To assess the effectiveness of the proposed model, a sequence of numerical problems is tested, and some advanced surrogates are selected as the baseline models. Moreover, to demonstrate the potential of the proposed model in aiding intricate engineering design, one engineering case is investigated as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助浮浮世世采纳,获得10
2秒前
baobao发布了新的文献求助10
2秒前
2秒前
carpybala发布了新的文献求助10
3秒前
球球发布了新的文献求助10
3秒前
丘比特应助ZHANGMANLI0422采纳,获得10
3秒前
小郑完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
WTT完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Emma完成签到,获得积分10
5秒前
Hh完成签到,获得积分10
6秒前
梧桐树完成签到,获得积分10
6秒前
典雅的思菱完成签到,获得积分10
6秒前
6秒前
成就的沛菡完成签到 ,获得积分10
6秒前
ysf完成签到,获得积分10
6秒前
doubleshake发布了新的文献求助10
6秒前
鱿鱼完成签到,获得积分10
7秒前
7秒前
KingWong发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
卢卢完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
weiteman完成签到,获得积分10
9秒前
宸5931发布了新的文献求助10
9秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646