已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A two-actor model for understanding user engagement with content creators: Applying social capital theory

社会资本 内容(测量理论) 心理学 用户参与度 社会学 社会心理学 知识管理 计算机科学 人机交互 万维网 社会科学 数学 数学分析
作者
Khalid Hussain,Khaldoon Nusair,Muhammad Junaid,Waqas Aman
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:156: 108237-108237
标识
DOI:10.1016/j.chb.2024.108237
摘要

The emergence of video sharing platforms has given rise to the creation and consumption of tourism-related content. However, there is limited knowledge about the characteristics of content creators that enhance users' engagement with their content. The present study aims to fill this gap by examining creator characteristics and their impact on three tiers of user engagement. Tourism-related content, comprising 366 videos across six destinations, was extracted from YouTube using three social media analytic tools: VidIQ, TubeBuddy, and SocialBlade. The data were analyzed using PLS-SEM with SmartPLS 4.0. The findings reveal that channel subscribers positively influence user engagement at three levels – views, likes, and comments. However, a higher number of video uploads negatively impacts engagement. Furthermore, older videos tend to garner more views, but users' tendency to like the videos decreases over time. In addition, we extracted 23,993 comments and performed sentiment analysis on users' comments using Python-based VADER social media sentiment analysis tool. The compound-based sentiment analysis reveals that 59.5 percent of users show positive sentiments toward tourism-related content on YouTube while only 9.3 comments were negative, and 31.2 percent of sentiments remain neutral. Temporal analysis shows the rising trend in qualitative user engagement from 2010 to 2023, highlighting a growing interest in consuming and interacting with tourism-related content. This study discusses its theoretical contributions and managerial implications for content creators, destination managers, and advertising agencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘燕发布了新的文献求助10
1秒前
Hello应助077采纳,获得10
2秒前
3秒前
5秒前
5秒前
6秒前
water103完成签到,获得积分20
7秒前
7秒前
9秒前
water103发布了新的文献求助10
9秒前
9秒前
勤劳傲南发布了新的文献求助10
10秒前
10秒前
diaiyi完成签到 ,获得积分10
10秒前
小溪发布了新的文献求助10
11秒前
12秒前
意意发布了新的文献求助10
14秒前
zwf123完成签到 ,获得积分10
15秒前
Fxhy完成签到,获得积分10
16秒前
077发布了新的文献求助10
16秒前
chowjb完成签到,获得积分10
17秒前
21秒前
22秒前
26秒前
陈一发布了新的文献求助10
26秒前
zzzszzz发布了新的文献求助10
27秒前
豆丁小猫完成签到,获得积分10
29秒前
kk发布了新的文献求助10
29秒前
PENG应助舒服的板凳采纳,获得10
30秒前
gypsi完成签到,获得积分0
31秒前
Orange应助科研通管家采纳,获得10
32秒前
32秒前
田様应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
打打应助科研通管家采纳,获得10
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
毛豆应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463394
求助须知:如何正确求助?哪些是违规求助? 3056785
关于积分的说明 9053976
捐赠科研通 2746681
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696299
邀请新用户注册赠送积分活动 695859