Efficient and Privacy-Preserving Federated Learning against Poisoning Adversaries

计算机科学 上传 联合学习 计算机安全 架空(工程) 保密 比例(比率) 人工智能 机器学习 万维网 物理 量子力学 操作系统
作者
Jiaqi Zhao,Hui Zhu,Fengwei Wang,Yandong Zheng,Rongxing Lu,Hui Li
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 2320-2333 被引量:2
标识
DOI:10.1109/tsc.2024.3377931
摘要

The ever-growing data scale and increasingly strict privacy restraint have recently drawn extensive attention to federated learning (FL) as a multi-party machine learning paradigm for achieving high-quality model construction without data collection. Nevertheless, uploading local models in FL can still be exploited by adversaries to infer participants' sensitive data. Furthermore, it is possible for malicious participants to manipulate the global model by submitting poisonous local models. To tackle these challenges, this paper proposes an efficient and privacy-preserving federated learning framework against poisoning adversaries, namely ELFL, which can ensure the confidentiality of local models while effectively resisting data poisoning attacks. Specifically, we first design a grouped secure aggregation algorithm, through which the aggregation server can compute the summations of local models inside logic groups but cannot see individual ones. Then, based on grouped aggregations, our poisoning defense mechanism could detect and quickly phase out malicious participants from training candidates. Moreover, the computational complexity of participants is independent of their total number, so it is suitable for large-scale scenes. Detailed security analysis demonstrates the security of ELFL. Experimental results show that ELFL could maintain a high accuracy against representative data poisoning attacks, and its computational and communication overhead is indeed low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助kekeli采纳,获得10
刚刚
Orange应助oiinn采纳,获得10
刚刚
搜集达人应助h7nho采纳,获得10
刚刚
李小宁发布了新的文献求助10
2秒前
爱你哦发布了新的文献求助10
2秒前
2秒前
3秒前
酷波er应助彩色的若颜采纳,获得10
3秒前
wb完成签到 ,获得积分10
4秒前
4秒前
丘比特应助Meteor采纳,获得10
4秒前
0406完成签到,获得积分10
4秒前
Yeah完成签到,获得积分10
6秒前
无花果应助郭倩采纳,获得10
6秒前
Hello应助璀璨采纳,获得10
6秒前
6秒前
思源应助李小宁采纳,获得10
7秒前
FKVB_完成签到 ,获得积分10
8秒前
清新的马里奥完成签到 ,获得积分10
9秒前
ZXD1989驳回了wlscj应助
9秒前
10秒前
Zxtzzzzz发布了新的文献求助10
11秒前
情怀应助lsc采纳,获得10
11秒前
重要的安寒完成签到,获得积分20
11秒前
12秒前
13秒前
Try完成签到,获得积分10
15秒前
15秒前
科研通AI6应助重要的安寒采纳,获得30
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
烟花应助meng采纳,获得10
18秒前
xalone发布了新的文献求助10
18秒前
18秒前
22完成签到,获得积分10
19秒前
19秒前
蒲公英发布了新的文献求助10
19秒前
Ghy完成签到,获得积分10
19秒前
浮游应助芷兰丁香采纳,获得10
20秒前
浮游应助wjy321采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480303
求助须知:如何正确求助?哪些是违规求助? 4581518
关于积分的说明 14380905
捐赠科研通 4510074
什么是DOI,文献DOI怎么找? 2471649
邀请新用户注册赠送积分活动 1458040
关于科研通互助平台的介绍 1431812