Efficient and Privacy-Preserving Federated Learning against Poisoning Adversaries

计算机科学 上传 联合学习 计算机安全 架空(工程) 保密 比例(比率) 人工智能 机器学习 万维网 量子力学 操作系统 物理
作者
Jiaqi Zhao,Hui Zhu,Fengwei Wang,Yandong Zheng,Rongxing Lu,Hui Li
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 2320-2333 被引量:2
标识
DOI:10.1109/tsc.2024.3377931
摘要

The ever-growing data scale and increasingly strict privacy restraint have recently drawn extensive attention to federated learning (FL) as a multi-party machine learning paradigm for achieving high-quality model construction without data collection. Nevertheless, uploading local models in FL can still be exploited by adversaries to infer participants' sensitive data. Furthermore, it is possible for malicious participants to manipulate the global model by submitting poisonous local models. To tackle these challenges, this paper proposes an efficient and privacy-preserving federated learning framework against poisoning adversaries, namely ELFL, which can ensure the confidentiality of local models while effectively resisting data poisoning attacks. Specifically, we first design a grouped secure aggregation algorithm, through which the aggregation server can compute the summations of local models inside logic groups but cannot see individual ones. Then, based on grouped aggregations, our poisoning defense mechanism could detect and quickly phase out malicious participants from training candidates. Moreover, the computational complexity of participants is independent of their total number, so it is suitable for large-scale scenes. Detailed security analysis demonstrates the security of ELFL. Experimental results show that ELFL could maintain a high accuracy against representative data poisoning attacks, and its computational and communication overhead is indeed low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
雪雪子哇发布了新的文献求助10
2秒前
2秒前
踏实马里奥完成签到,获得积分10
2秒前
赘婿应助油焖青椒采纳,获得10
2秒前
orixero应助Zhang Wei采纳,获得10
3秒前
Li656943234发布了新的文献求助10
4秒前
4秒前
李健的粉丝团团长应助tyx采纳,获得30
5秒前
5秒前
Damon发布了新的文献求助10
6秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
mpenny77应助科研通管家采纳,获得20
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
木木应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
hhg发布了新的文献求助10
11秒前
12秒前
油焖青椒完成签到,获得积分20
12秒前
胡说八道完成签到 ,获得积分10
12秒前
科研通AI2S应助yiding采纳,获得10
13秒前
搜集达人应助guan采纳,获得10
13秒前
16秒前
就好发布了新的文献求助10
16秒前
乐乐应助Li656943234采纳,获得10
16秒前
晶格畸变完成签到,获得积分10
17秒前
rio发布了新的文献求助10
17秒前
丘比特应助严剑封采纳,获得10
18秒前
18秒前
123发布了新的文献求助10
19秒前
上官若男应助hhg采纳,获得10
19秒前
20秒前
20秒前
20秒前
安陌煜发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905