Active hydrogen-controlled CO<sub>2</sub>/N<sub>2</sub>/NO<sub>x</sub> electroreduction:From mechanism understanding to catalyst design
化学
氢
制氢
有机化学
作者
Hanle Liu,Shunhan Jia,Limin Wu,Lei He,Xiaofu Sun,Buxing Han
<p>The development of renewable-energy-powered electrocatalysis meets the need for the sustainable society. With water as the proton source, it enables efficient production of chemicals and fuels from renewable resources like CO<sub>2</sub>, N<sub>2</sub>, and NO<sub>x</sub> under ambient conditions. Hydrogen generated via water dissociation is a crucial participant in transforming reactants into desired products, but it also serves as a direct source of undesired reactions when in excess. In this review, we first present an overview of the functional mechanisms of active hydrogen in the electroreduction of CO<sub>2</sub>/N<sub>2</sub>/NO<sub>x</sub>. We then introduce a range of methods to enhance our understanding of these mechanisms. Furthermore, a detailed discussion of design strategies aimed at regulating active hydrogen in the reduction of CO<sub>2</sub>/N<sub>2</sub>/NO<sub>x</sub> is provided. Finally, an outlook on the critical challenges remaining in this research area and promising opportunities for future research is considered.</p>