Machine learning-based system reliability analysis with Gaussian Process Regression

计算机科学 可靠性(半导体) 克里金 回归分析 机器学习 人工智能 过程(计算) 高斯过程 回归 可靠性工程 统计 高斯分布 数学 工程类 物理 程序设计语言 量子力学 功率(物理)
作者
Lisang Zhou,Ziqian Luo,Xueting Pan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.11125
摘要

Machine learning-based reliability analysis methods have shown great advancements for their computational efficiency and accuracy. Recently, many efficient learning strategies have been proposed to enhance the computational performance. However, few of them explores the theoretical optimal learning strategy. In this article, we propose several theorems that facilitates such exploration. Specifically, cases that considering and neglecting the correlations among the candidate design samples are well elaborated. Moreover, we prove that the well-known U learning function can be reformulated to the optimal learning function for the case neglecting the Kriging correlation. In addition, the theoretical optimal learning strategy for sequential multiple training samples enrichment is also mathematically explored through the Bayesian estimate with the corresponding lost functions. Simulation results show that the optimal learning strategy considering the Kriging correlation works better than that neglecting the Kriging correlation and other state-of-the art learning functions from the literatures in terms of the reduction of number of evaluations of performance function. However, the implementation needs to investigate very large computational resource.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助尊敬冰姬采纳,获得10
刚刚
晴天发布了新的文献求助10
1秒前
yangYR完成签到,获得积分10
1秒前
yangy115发布了新的文献求助10
1秒前
2秒前
2秒前
领导范儿应助ZZ采纳,获得10
3秒前
3秒前
任婷发布了新的文献求助10
4秒前
虎皮仓鼠发布了新的文献求助30
5秒前
6秒前
张兰兰完成签到,获得积分10
8秒前
打打应助铁铁采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
guoyunlong发布了新的文献求助10
12秒前
肖恩发布了新的文献求助10
13秒前
方圆几里发布了新的文献求助10
13秒前
江月年发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
lfzw完成签到,获得积分10
14秒前
Jasper应助马明旋采纳,获得10
14秒前
Orange应助任婷采纳,获得10
14秒前
内向尔安发布了新的文献求助10
14秒前
Hakunamatata完成签到,获得积分10
15秒前
15秒前
魔幻若血发布了新的文献求助10
16秒前
white完成签到,获得积分10
16秒前
17秒前
lucky发布了新的文献求助40
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430298
求助须知:如何正确求助?哪些是违规求助? 4543501
关于积分的说明 14187546
捐赠科研通 4461646
什么是DOI,文献DOI怎么找? 2446255
邀请新用户注册赠送积分活动 1437582
关于科研通互助平台的介绍 1414406