Unsupervised model adaptation for source-free segmentation of medical images

计算机科学 分割 人工智能 分类器(UML) 机器学习 适应(眼睛) 医学影像学 一般化 模式识别(心理学) 数据挖掘 数学分析 物理 数学 光学
作者
Serban Stan,Mohammad Rostami
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103179-103179 被引量:1
标识
DOI:10.1016/j.media.2024.103179
摘要

The recent prevalence of deep neural networks has led semantic segmentation networks to achieve human-level performance in the medical field, provided they are given sufficient training data. However, these networks often fail to generalize when tasked with creating semantic maps for out-of-distribution images, necessitating re-training on new distributions. This labor-intensive process requires expert knowledge for generating training labels. In the medical field, distribution shifts can naturally occur due to the choice of imaging devices, such as MRI or CT scanners. To mitigate the need for labeling images in a target domain after successful model training in a fully annotated source domain with a different data distribution, unsupervised domain adaptation (UDA) can be employed. Most UDA approaches ensure target generalization by generating a shared source/target latent feature space, allowing a source-trained classifier to maintain performance in the target domain. However, such approaches necessitate joint source and target data access, potentially leading to privacy leaks with respect to patient information. We propose a UDA algorithm for medical image segmentation that does not require access to source data during adaptation, thereby preserving patient data privacy. Our method relies on approximating the source latent features at the time of adaptation and creates a joint source/target embedding space by minimizing a distributional distance metric based on optimal transport. We demonstrate that our approach is competitive with recent UDA medical segmentation works, even with the added requirement of privacy. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助keke采纳,获得10
刚刚
ay完成签到,获得积分10
刚刚
1秒前
doki发布了新的文献求助10
1秒前
1秒前
lxlcx发布了新的文献求助10
1秒前
研友_nV3axZ完成签到,获得积分10
1秒前
2秒前
5712153完成签到,获得积分10
2秒前
QAQAQAQ完成签到,获得积分10
2秒前
淡淡的若冰应助JJ采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
陈词滥调完成签到,获得积分10
5秒前
5秒前
owl777发布了新的文献求助10
5秒前
文天烽完成签到,获得积分10
5秒前
小王哪跑发布了新的文献求助10
6秒前
jnngshan发布了新的文献求助10
7秒前
7秒前
鸡毛完成签到,获得积分10
7秒前
华青ww发布了新的文献求助10
7秒前
大方思柔完成签到 ,获得积分10
8秒前
丘比特应助百龄童采纳,获得10
8秒前
冷静无心发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
嵇之云发布了新的文献求助10
10秒前
胡图图完成签到,获得积分10
11秒前
11秒前
卡卡完成签到,获得积分10
11秒前
11秒前
英俊的铭应助hellohappy1201采纳,获得10
11秒前
美丽松鼠完成签到,获得积分20
11秒前
皇城有饭局完成签到,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587