Unsupervised model adaptation for source-free segmentation of medical images

计算机科学 分割 人工智能 分类器(UML) 机器学习 适应(眼睛) 医学影像学 一般化 模式识别(心理学) 数据挖掘 数学分析 物理 数学 光学
作者
Serban Stan,Mohammad Rostami
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103179-103179 被引量:11
标识
DOI:10.1016/j.media.2024.103179
摘要

The recent prevalence of deep neural networks has led semantic segmentation networks to achieve human-level performance in the medical field, provided they are given sufficient training data. However, these networks often fail to generalize when tasked with creating semantic maps for out-of-distribution images, necessitating re-training on new distributions. This labor-intensive process requires expert knowledge for generating training labels. In the medical field, distribution shifts can naturally occur due to the choice of imaging devices, such as MRI or CT scanners. To mitigate the need for labeling images in a target domain after successful model training in a fully annotated source domain with a different data distribution, unsupervised domain adaptation (UDA) can be employed. Most UDA approaches ensure target generalization by generating a shared source/target latent feature space, allowing a source-trained classifier to maintain performance in the target domain. However, such approaches necessitate joint source and target data access, potentially leading to privacy leaks with respect to patient information. We propose a UDA algorithm for medical image segmentation that does not require access to source data during adaptation, thereby preserving patient data privacy. Our method relies on approximating the source latent features at the time of adaptation and creates a joint source/target embedding space by minimizing a distributional distance metric based on optimal transport. We demonstrate that our approach is competitive with recent UDA medical segmentation works, even with the added requirement of privacy. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
裤里关注了科研通微信公众号
1秒前
1秒前
1秒前
1秒前
林嘉楠发布了新的文献求助30
1秒前
快乐小王发布了新的文献求助80
2秒前
2秒前
3秒前
3秒前
ling22发布了新的文献求助10
6秒前
balalal完成签到,获得积分10
6秒前
吴龙发布了新的文献求助10
6秒前
6秒前
zd200572发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
怕孤单的安蕾完成签到,获得积分10
10秒前
10秒前
如常完成签到,获得积分10
11秒前
轻松绮露发布了新的文献求助10
11秒前
Amberwdd发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
starlx0813发布了新的文献求助10
14秒前
14秒前
qqqq发布了新的文献求助10
14秒前
14秒前
14秒前
吴龙完成签到,获得积分10
14秒前
15秒前
今后应助缓慢的皮卡丘采纳,获得10
15秒前
李润春完成签到,获得积分10
16秒前
16秒前
zz完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133