Nonlinear relations of urban morphology to thermal anomalies: A cross-time comparative study based on Grad-CAM and SHAP

城市形态 城市化 可解释性 异常(物理) 形态学(生物学) 环境科学 卷积神经网络 地理 城市规划 自然地理学 环境资源管理 计算机科学 生态学 机器学习 生物 物理 遗传学 凝聚态物理
作者
Jingxuan Hu,Tianhui Fan,Xiaolan Tang,Zhijie Yang,Yujie Ren
出处
期刊:Ecological Indicators [Elsevier]
卷期号:162: 112024-112024 被引量:2
标识
DOI:10.1016/j.ecolind.2024.112024
摘要

Urban thermal anomalies profoundly impact human society, affecting daily life, public health, and residential comfort. Prior studies linked thermal anomalies to urban morphology evolution and land use change during urbanization based on multi-indicator quantification of urban morphology and linear regression modeling. However, it remained unclear which urban morphology elements predominantly dominate thermal anomalies and whether their impact is solely linear, and understanding on the diverse mechanisms through how urban morphology influences various thermal anomalies across seasons remains limited. Therefore, this study employed convolutional neural networks and interpretable machine learning (Grad-CAM and SHAP) to explore nonlinear relationships between urban morphology and thermal anomalies, focusing on comparisons between different types of anomaly events across time. The main findings indicated: (1) Grad-CAM's identification of pivotal hotspot pixels and SHAP's interpretability assessment highlighted that crucial urban morphology factors contributing to thermal anomalies include the area of green spaces, water spaces, the number of residential facilities, building floor area ratio, and the count of industrial production facilities. (2) Clear nonlinear relationships were observed between dominant urban morphology factors and the occurrence of thermal anomalies, which confirming the existence of multiple thresholds and activation levels, as demonstrated through SHAP's partial dependency analysis. The dynamic complexity of these associations significantly varied depending on the type of event and the timing of thermal anomalies. These findings offer actionable guidance for urban planners to refine climate-friendly strategies, revealing the heterogeneity of these relationships across time and seasons through multi-scenario analysis and providing tailored insights for climate-sensitive urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八森木完成签到 ,获得积分10
1秒前
王桑完成签到 ,获得积分10
1秒前
1秒前
nini完成签到,获得积分10
2秒前
永毅完成签到 ,获得积分10
4秒前
兜兜揣满糖完成签到 ,获得积分10
5秒前
chengya完成签到,获得积分10
5秒前
停摆的指针完成签到,获得积分0
7秒前
明天肯定学习完成签到,获得积分10
8秒前
cc2001完成签到,获得积分10
9秒前
芝麻完成签到,获得积分10
10秒前
若水完成签到,获得积分0
11秒前
席以亦完成签到,获得积分10
11秒前
任伟超完成签到,获得积分10
12秒前
Anonymous发布了新的文献求助10
12秒前
一心向雨完成签到,获得积分20
13秒前
xiao柒柒柒完成签到,获得积分10
13秒前
zlx完成签到,获得积分10
14秒前
Xwu完成签到,获得积分10
15秒前
高兴的老黑完成签到,获得积分10
15秒前
john应助cc2001采纳,获得10
18秒前
Shueason完成签到 ,获得积分10
19秒前
科研通AI2S应助Xwu采纳,获得10
19秒前
小奕完成签到,获得积分10
21秒前
21秒前
21秒前
集典完成签到 ,获得积分10
21秒前
小张完成签到 ,获得积分10
22秒前
神勇友灵完成签到,获得积分10
23秒前
23秒前
坦率绮山完成签到 ,获得积分10
25秒前
一心向雨发布了新的文献求助10
25秒前
刘晓伟完成签到,获得积分10
25秒前
26秒前
吴大语完成签到,获得积分10
26秒前
27秒前
Allen完成签到 ,获得积分10
27秒前
夏来应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134053
求助须知:如何正确求助?哪些是违规求助? 2784853
关于积分的说明 7768983
捐赠科研通 2440314
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792