The Role of Nitrogen Doping in Modulating Ruthenium Nanocatalysts for Enhanced Electrochemical Hydrogen Evolution Reaction in Alkaline Medium

纳米材料基催化剂 电化学 X射线光电子能谱 过电位 材料科学 碳纤维 无机化学 X射线吸收光谱法 催化作用 碳纳米管 化学工程 化学 吸收光谱法 纳米技术 物理化学 纳米颗粒 电极 有机化学 工程类 物理 复合材料 量子力学 复合数
作者
Lavanya Korampattu,Sidharth Barik,Ajmal Pandikassala,Rajashri Urkude,Sreekumar Kurungot,Paresh L. Dhepe
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (9): 4262-4274 被引量:2
标识
DOI:10.1021/acs.chemmater.3c03169
摘要

Nitrogen doping has become a fundamental approach to enhance the catalytic performance of carbon materials across various applications. The introduction of nitrogen creates defects and active sites, promoting the formation of small metal particles and strengthening the metal–support interaction within carbon materials. However, the challenge lies in developing sustainable and cost-effective methods for synthesizing nitrogen-doped carbon materials. In this study, we present a sustainable approach for the synthesis of ruthenium on nitrogen-doped carbon catalysts (Ru-CCP) using chitosan as a nitrogen and carbon source. Unlike traditional methods, our process avoids the use of additional nitrogen precursors and templates, streamlining the synthesis while using a renewable resource. The synthesized material exhibits an exceptional performance in the electrochemical hydrogen evolution reaction (HER) in alkaline conditions by achieving a current density of 25 mA cm–2 at an impressively low overpotential of 46 mV, outperforming Pt/C under similar conditions. The detailed studies on structural and electronic properties of the materials using X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) revealed that the remarkable catalytic activity is upheld by the unique interplay between Ruδ+ and surface nitrogen moieties, notably pyridinic and pyrrolic nitrogen. Here, we demonstrate the control of particle size and electronic environment around the metal atom via the interaction of nitrogen and unravel the role of nitrogen doping in tuning the catalytic performance. In addition, this work offers insights into efficient HER catalyst design and emphasizes the potential of biomass-derived materials like chitosan in advancing clean hydrogen production for renewable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
刚刚
1秒前
Muller完成签到,获得积分10
1秒前
经法发布了新的文献求助10
2秒前
谦让的忘幽完成签到,获得积分20
2秒前
和谐小南完成签到,获得积分10
2秒前
小jiojio的猪完成签到,获得积分10
2秒前
小匹夫完成签到,获得积分10
3秒前
赤墨完成签到,获得积分10
3秒前
3秒前
4秒前
狮子沟核聚变骡子完成签到 ,获得积分10
4秒前
4秒前
传奇3应助乔治韦斯莱采纳,获得30
4秒前
4秒前
5秒前
于某人完成签到,获得积分10
5秒前
小陈要发SCI完成签到 ,获得积分10
5秒前
cdercder应助尹天扬采纳,获得20
5秒前
称心铭完成签到 ,获得积分10
6秒前
cjh258819完成签到,获得积分10
7秒前
7秒前
xl完成签到 ,获得积分10
8秒前
8秒前
8秒前
liu完成签到 ,获得积分10
8秒前
8秒前
wdlc完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
hhh发布了新的文献求助30
11秒前
Romina完成签到,获得积分10
11秒前
你不知道发布了新的文献求助30
12秒前
困_zzzzzz完成签到 ,获得积分10
12秒前
科目三应助猪猪hero采纳,获得10
12秒前
调研昵称发布了新的文献求助10
13秒前
喜悦中道应助cjh258819采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678