Understanding charge transfer dynamics in blended positive electrodes for Li-ion batteries

材料科学 电极 电荷(物理) 离子 动力学(音乐) 化学物理 纳米技术 工程物理 光电子学 物理化学 有机化学 化学 物理 量子力学 声学 工程类
作者
Dimitrios Chatzogiannakis,Violetta A. Arszelewska,Pierre‐Etienne Cabelguen,François Fauth,Montse Casas‐Cabanas,M. Rosa Palacín
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:69: 103414-103414 被引量:6
标识
DOI:10.1016/j.ensm.2024.103414
摘要

This paper investigates the electrochemical behavior of binary blend electrodes comprising equivalent amounts of lithium-ion battery active materials, namely LiNi0.5Mn0.3Co0.2O2 (NMC), LiMn2O4 (LMO), LiFe0.35Mn0.65PO4 (LFMP) and LiFePO4 (LFP)), with a focus on decoupled electrochemical testing and operando X-ray diffraction (XRD). All possible 50:50 blend combinations were studied and the distribution of current between blend components was followed during continuous and pulsed charge and discharge processes. The results demonstrate the significant impact of the voltage profiles of individual materials on the current distribution, with the effective C-rate of each component varying throughout the state of charge (SoC). Pulsed decoupled electrochemical testing reveals the exchange of charge between blend components during relaxation, showcasing the "buffer effect", which has also been captured through time-resolved operando XRD experiments in real blends carefully considering beam-induced effects. The directionality and magnitude of the charge transfer were found to depend on the nature of the components and the cell State of Charge (SoC), being also influenced by temperature. These dependencies can be rationalized considering both thermodynamics (voltage profile) and kinetic properties of the blend constituents. These findings contribute to advancing the understanding of internal dynamics in blended electrodes, offering valuable insights for the rational design of blends to meet the diverse operational demands of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助凉风有信9527采纳,获得10
刚刚
LEMON发布了新的文献求助20
1秒前
炜大的我完成签到,获得积分10
1秒前
haimianbaobao发布了新的文献求助10
1秒前
传奇3应助研友_nPoXoL采纳,获得10
1秒前
lpp完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
22发布了新的文献求助10
2秒前
zhui发布了新的文献求助10
2秒前
3秒前
Jenny应助哈哈哈哈采纳,获得10
4秒前
笨笨芯应助Miracle采纳,获得10
4秒前
研友_LJGpan完成签到,获得积分10
4秒前
xiaozhenA完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
云澈发布了新的文献求助10
4秒前
Hello paper发布了新的文献求助20
5秒前
a111完成签到,获得积分10
5秒前
乐乐应助zzznznnn采纳,获得10
5秒前
哈哈完成签到,获得积分20
6秒前
阳光衣完成签到,获得积分0
6秒前
8秒前
苏兴龙关注了科研通微信公众号
8秒前
8秒前
脑洞疼应助谦让的含海采纳,获得10
8秒前
华华发布了新的文献求助10
8秒前
8秒前
Orange应助命运的X号采纳,获得10
8秒前
云澈完成签到,获得积分10
10秒前
风趣的觅山完成签到,获得积分10
10秒前
打打应助SCI采纳,获得50
10秒前
pinging应助Wang采纳,获得10
10秒前
10秒前
灵巧荆发布了新的文献求助10
11秒前
和谐续完成签到 ,获得积分10
11秒前
李健应助是天使呢采纳,获得10
11秒前
11秒前
12秒前
香菜兔子完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794