Translating non-contrast CT calcium score images to virtual CCTA to aid segmentation of coronary arteries and myocardium

医学 脂肪组织 心室 冠状动脉 钙化积分 分割 冠状动脉疾病 放射科 动脉 内科学 心脏病学 人工智能 冠状动脉钙 计算机科学
作者
Hao Wu,Yingnan Song,Ammar Hoori,Ananya Subramaniam,Juhwan Lee,Justin N. Kim,Sadeer Al‐Kindi,Chun‐Ho Yun,Sanjay Rajagopalan,David L. Wilson
标识
DOI:10.1117/12.3006516
摘要

Non-contrast, cardiac CT Calcium Score (CTCS) images provide a low-cost cardiovascular disease screening exam to guide therapeutics. We are extending standard Agatston score to include cardiovascular risk assessments from features of epicardial adipose tissue, pericoronary adipose tissue, heart size, and more, which are currently extracted from Coronary CT Angiography (CCTA) images. To aid such determinations, we developed a deep-learning method to synthesize Virtual CT Angiography (VCTA) images from CTCS images. We retrospectively collected 256 patients who underwent CCTA and CTCS from our hospitals (MacKay and UH). Training on 205 patients from UH, we used the contrastive, unpaired translation method to create VCTA images. Testing on 51 patients from Mackay, we generated VCTA images that compared favorably to the matched CCTA images with enhanced coronaries and ventricular cavity that were well delineated from surrounding tissues (epicardial adipose tissue and myocardium). The automated segmentation of myocardium and left-ventricle cavity in VCTA showed strong agreement with the measurements obtained from CCTA. The measured percent volume differences between VCTA and CCTA segmentation were 2±8% for the myocardium and 5±10% for the left-ventricle cavity, respectively. Manually segmented coronary arteries from VCTA and CTCS (with guidance from registered CCTA) aligned well. Centerline displacements were within 50% of coronary artery diameter (4mm). Pericoronary adipose tissue measurements using the axial disk method showed excellent agreements between measurements from VCTA ROIs and manual segmentations (e.g., average HU differences were typically <3HU). Promising results suggest that VCTA can be used to add assessments indicative of cardiovascular risk from CTCS images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
毛毛完成签到,获得积分10
3秒前
自觉的绮烟完成签到,获得积分10
3秒前
GuMingyang完成签到,获得积分10
3秒前
3秒前
害羞的妙梦完成签到,获得积分10
4秒前
4秒前
难过怀绿完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
可积完成签到,获得积分10
8秒前
ShengjuChen完成签到 ,获得积分10
8秒前
tony发布了新的文献求助10
9秒前
健康的人生完成签到,获得积分10
9秒前
严yee发布了新的文献求助10
9秒前
10秒前
飞飞飞发布了新的文献求助10
10秒前
10秒前
刘科研完成签到,获得积分10
10秒前
kosmos完成签到,获得积分10
11秒前
11秒前
Khaos_0929完成签到,获得积分10
12秒前
13秒前
zhangmeimei完成签到,获得积分10
13秒前
化学镁铝完成签到,获得积分10
14秒前
15秒前
yyyyyy完成签到 ,获得积分10
16秒前
Satan发布了新的文献求助10
16秒前
17秒前
科研通AI6.1应助tony采纳,获得10
17秒前
怜梦完成签到,获得积分10
17秒前
cookie完成签到,获得积分10
18秒前
conveyor6发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707