Translating non-contrast CT calcium score images to virtual CCTA to aid segmentation of coronary arteries and myocardium

医学 脂肪组织 心室 冠状动脉 钙化积分 分割 冠状动脉疾病 放射科 动脉 内科学 心脏病学 人工智能 冠状动脉钙 计算机科学
作者
Hao Wu,Yingnan Song,Ammar Hoori,Ananya Subramaniam,Juhwan Lee,Justin Kim,Sadeer Al‐Kindi,Chun‐Ho Yun,Sanjay Rajagopalan,David L. Wilson
标识
DOI:10.1117/12.3006516
摘要

Non-contrast, cardiac CT Calcium Score (CTCS) images provide a low-cost cardiovascular disease screening exam to guide therapeutics. We are extending standard Agatston score to include cardiovascular risk assessments from features of epicardial adipose tissue, pericoronary adipose tissue, heart size, and more, which are currently extracted from Coronary CT Angiography (CCTA) images. To aid such determinations, we developed a deep-learning method to synthesize Virtual CT Angiography (VCTA) images from CTCS images. We retrospectively collected 256 patients who underwent CCTA and CTCS from our hospitals (MacKay and UH). Training on 205 patients from UH, we used the contrastive, unpaired translation method to create VCTA images. Testing on 51 patients from Mackay, we generated VCTA images that compared favorably to the matched CCTA images with enhanced coronaries and ventricular cavity that were well delineated from surrounding tissues (epicardial adipose tissue and myocardium). The automated segmentation of myocardium and left-ventricle cavity in VCTA showed strong agreement with the measurements obtained from CCTA. The measured percent volume differences between VCTA and CCTA segmentation were 2±8% for the myocardium and 5±10% for the left-ventricle cavity, respectively. Manually segmented coronary arteries from VCTA and CTCS (with guidance from registered CCTA) aligned well. Centerline displacements were within 50% of coronary artery diameter (4mm). Pericoronary adipose tissue measurements using the axial disk method showed excellent agreements between measurements from VCTA ROIs and manual segmentations (e.g., average HU differences were typically <3HU). Promising results suggest that VCTA can be used to add assessments indicative of cardiovascular risk from CTCS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢发布了新的文献求助10
1秒前
研友_LOoomL发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
土豆发布了新的文献求助10
4秒前
麦饭发布了新的文献求助10
6秒前
luwenxuan完成签到,获得积分10
6秒前
大观天下发布了新的文献求助10
6秒前
7秒前
yomi发布了新的文献求助10
7秒前
JamesPei应助快乐的蓝采纳,获得10
7秒前
7秒前
8秒前
8秒前
海带先生发布了新的文献求助10
8秒前
FashionBoy应助melodyezi采纳,获得10
8秒前
10秒前
过于傻逼完成签到,获得积分10
11秒前
12秒前
余鱼鱼完成签到,获得积分10
13秒前
SciGPT应助研友_LOoomL采纳,获得10
14秒前
18秒前
18秒前
18秒前
共享精神应助十七画采纳,获得10
23秒前
dawnfrf应助SKD采纳,获得30
23秒前
ym完成签到 ,获得积分10
23秒前
快乐的蓝发布了新的文献求助10
24秒前
Charon发布了新的文献求助10
24秒前
Masaccy发布了新的文献求助10
26秒前
丘比特应助蔓越莓蛋糕采纳,获得10
26秒前
晓阳完成签到,获得积分10
27秒前
海带先生完成签到,获得积分10
27秒前
27秒前
竹林听雨zxs完成签到 ,获得积分10
27秒前
Quanquan完成签到 ,获得积分10
33秒前
神勇葵阴完成签到,获得积分20
34秒前
专注雁桃完成签到 ,获得积分10
35秒前
dawnfrf应助聪慧的致远采纳,获得20
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268281
求助须知:如何正确求助?哪些是违规求助? 2907854
关于积分的说明 8343465
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655174
邀请新用户注册赠送积分活动 634291