Translating non-contrast CT calcium score images to virtual CCTA to aid segmentation of coronary arteries and myocardium

医学 脂肪组织 心室 冠状动脉 钙化积分 分割 冠状动脉疾病 放射科 动脉 内科学 心脏病学 人工智能 冠状动脉钙 计算机科学
作者
Hao Wu,Yingnan Song,Ammar Hoori,Ananya Subramaniam,Juhwan Lee,Justin N. Kim,Sadeer Al‐Kindi,Chun‐Ho Yun,Sanjay Rajagopalan,David L. Wilson
标识
DOI:10.1117/12.3006516
摘要

Non-contrast, cardiac CT Calcium Score (CTCS) images provide a low-cost cardiovascular disease screening exam to guide therapeutics. We are extending standard Agatston score to include cardiovascular risk assessments from features of epicardial adipose tissue, pericoronary adipose tissue, heart size, and more, which are currently extracted from Coronary CT Angiography (CCTA) images. To aid such determinations, we developed a deep-learning method to synthesize Virtual CT Angiography (VCTA) images from CTCS images. We retrospectively collected 256 patients who underwent CCTA and CTCS from our hospitals (MacKay and UH). Training on 205 patients from UH, we used the contrastive, unpaired translation method to create VCTA images. Testing on 51 patients from Mackay, we generated VCTA images that compared favorably to the matched CCTA images with enhanced coronaries and ventricular cavity that were well delineated from surrounding tissues (epicardial adipose tissue and myocardium). The automated segmentation of myocardium and left-ventricle cavity in VCTA showed strong agreement with the measurements obtained from CCTA. The measured percent volume differences between VCTA and CCTA segmentation were 2±8% for the myocardium and 5±10% for the left-ventricle cavity, respectively. Manually segmented coronary arteries from VCTA and CTCS (with guidance from registered CCTA) aligned well. Centerline displacements were within 50% of coronary artery diameter (4mm). Pericoronary adipose tissue measurements using the axial disk method showed excellent agreements between measurements from VCTA ROIs and manual segmentations (e.g., average HU differences were typically <3HU). Promising results suggest that VCTA can be used to add assessments indicative of cardiovascular risk from CTCS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DBY发布了新的文献求助10
刚刚
尤海露完成签到,获得积分10
1秒前
卤西瓜的科研蛋完成签到,获得积分10
1秒前
1秒前
Lucas应助wan12138采纳,获得10
1秒前
比奇堡力工完成签到,获得积分20
1秒前
1秒前
盛清让完成签到,获得积分10
2秒前
2秒前
夜猫放羊完成签到,获得积分10
2秒前
2秒前
2秒前
FunGuy完成签到,获得积分10
2秒前
wwy发布了新的文献求助10
3秒前
sztao发布了新的文献求助30
3秒前
蜗牛带我散步完成签到,获得积分20
3秒前
菜不透完成签到,获得积分10
3秒前
3秒前
4秒前
Tinmuse发布了新的文献求助10
4秒前
Serenity完成签到,获得积分10
4秒前
直率的萤完成签到,获得积分10
4秒前
lx发布了新的文献求助10
5秒前
眯眯眼的盼海完成签到,获得积分20
5秒前
夜猫放羊发布了新的文献求助10
5秒前
5秒前
5秒前
嘿哈哈完成签到,获得积分10
6秒前
希文完成签到,获得积分10
6秒前
丘比特应助jun采纳,获得10
7秒前
cy完成签到,获得积分20
7秒前
在水一方应助伊布采纳,获得10
7秒前
桀桀桀完成签到,获得积分10
7秒前
7秒前
Lucas应助xiaolan采纳,获得10
7秒前
热情十三发布了新的文献求助10
8秒前
8秒前
lan发布了新的文献求助30
9秒前
11秒前
炙热晓博发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154