Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion

吸盘 抽吸 粘液 粘附 材料科学 纳米技术 机制(生物学) 生物系统 流体学 软机器人 计算机科学 生物 复合材料 人工智能 工程类 执行机构 地质学 物理 机械工程 古生物学 量子力学 航空航天工程
作者
Tianqi Yue,Weiyong Si,A. Keller,Chenguang Yang,Hermes Gadêlha,Jonathan Rossiter
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (16)
标识
DOI:10.1073/pnas.2314359121
摘要

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body’s mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity. Inspired by the combined action of biological suckers’ soft bodies and mucus secretion, we propose a multiscale suction mechanism which successfully achieves strong adaptive suction on dry complex surfaces which are both highly curved and rough, such as a stone. The proposed multiscale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multilayer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to micrometres (~10 µm). The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on complex surfaces but minimal overflow. We discuss its physical principles and demonstrate its practical application as a robotic gripper on a wide range of complex dry surfaces. We believe the presented multiscale adaptive suction mechanism is a powerful unique adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助Physio采纳,获得10
2秒前
cs920512发布了新的文献求助10
3秒前
LINGYUAN1991应助courage采纳,获得10
3秒前
赘婿应助科研废物采纳,获得10
3秒前
5秒前
朝菌完成签到,获得积分10
5秒前
5秒前
6秒前
Johnwick完成签到,获得积分20
7秒前
今后应助美好斓采纳,获得30
8秒前
129600完成签到,获得积分10
8秒前
5656完成签到 ,获得积分10
10秒前
月yue发布了新的文献求助10
10秒前
jerry完成签到,获得积分20
11秒前
Johnwick发布了新的文献求助10
11秒前
12秒前
快乐蜗牛完成签到,获得积分10
13秒前
13秒前
64658应助LL采纳,获得10
14秒前
乐乐应助jerry采纳,获得10
14秒前
罗新燕完成签到,获得积分20
15秒前
16秒前
研友_VZG7GZ应助Jeffery426采纳,获得10
17秒前
mlzmlz完成签到,获得积分0
17秒前
17秒前
mango完成签到,获得积分10
17秒前
月yue完成签到,获得积分10
20秒前
罗新燕发布了新的文献求助10
22秒前
Owen应助592lyc采纳,获得10
24秒前
jason完成签到,获得积分0
24秒前
25秒前
轻狂书生发布了新的文献求助10
26秒前
朝闻道完成签到 ,获得积分10
27秒前
领导范儿应助心灵美凝竹采纳,获得10
27秒前
美好斓发布了新的文献求助30
29秒前
FKVB_完成签到 ,获得积分10
29秒前
29秒前
30秒前
充电宝应助美美桑内采纳,获得10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203698
求助须知:如何正确求助?哪些是违规求助? 4383107
关于积分的说明 13648087
捐赠科研通 4240691
什么是DOI,文献DOI怎么找? 2326584
邀请新用户注册赠送积分活动 1324220
关于科研通互助平台的介绍 1276296