There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m