Calibration of Visual Measurement System for Excavator Manipulator Pose

挖掘机 计算机科学 校准 操纵器(设备) 计算机视觉 人工智能 机器人 数学 机械工程 工程类 统计
作者
Guangxu Liu,Qingfeng Wang,Bingcheng Li,Xiangshuo Xi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 075901-075901
标识
DOI:10.1088/1361-6501/ad37d2
摘要

Abstract The automatic control of excavator operation trajectories is a pivotal technology for autonomous excavators, with the essential prerequisite being the real-time measurement of manipulator poses. Given the complexity of the operating environment, traditional sensor-based measurement methods face limitations, whereas visual measurement emerges as a promising technique. Accurately measuring excavator manipulator poses involves a crucial aspect: mapping the relationship between image information and poses. First, to address the significant errors in pose prediction encountered with machine learning techniques like artificial neural networks, this work introduces a mathematical model for mapping this relationship, referred to as the pose mapping mathematical model, which includes calibrating model parameters. Second, to address the sensitivity of initial values in the calibration process, we propose a residual-guided initialization algorithm. This algorithm aims to ensure that initial values closely approximate the ground truth values, thus preventing matrix singularity at the source and avoiding parameter estimation divergence. Third, to tackle challenges such as unstable lighting conditions and discrepancies between the dataset and the mathematical model, we introduce the random sample consensus-driven Levenberg–Marquardt parameter optimization algorithm to enhance parameter estimation accuracy. Experiments with static and dynamic online measurement demonstrate that our method reduces pose measurement errors compared to existing methods. This research lays a solid foundation for developing visual measurement techniques for excavators and automated manipulator control based on visual measurements, also serving as a valuable reference for research on mechanical arms.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶zyf发布了新的文献求助10
2秒前
科目三应助小吴采纳,获得10
2秒前
工科研狗完成签到,获得积分10
4秒前
多金完成签到,获得积分10
4秒前
聪明菠萝完成签到,获得积分10
5秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
渔舟唱晚应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
楠楠应助科研通管家采纳,获得20
7秒前
7秒前
orixero应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
燕子发布了新的文献求助10
8秒前
8秒前
单身的溪流完成签到 ,获得积分10
9秒前
星辰大海应助陈文文采纳,获得10
10秒前
nicolaslcq完成签到,获得积分10
10秒前
11秒前
领导范儿应助体贴的青烟采纳,获得10
11秒前
13秒前
lgh完成签到,获得积分10
14秒前
lefora完成签到,获得积分10
15秒前
zhuosht发布了新的文献求助10
16秒前
研友_LOqqmZ发布了新的文献求助10
16秒前
16秒前
18秒前
yy完成签到 ,获得积分10
21秒前
科研通AI2S应助立军采纳,获得10
22秒前
楠楠发布了新的文献求助10
22秒前
晓空完成签到,获得积分10
24秒前
小吴发布了新的文献求助10
25秒前
27秒前
echo发布了新的文献求助10
31秒前
烁丶完成签到 ,获得积分10
31秒前
隐形曼青应助云中歌采纳,获得10
32秒前
34秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378044
求助须知:如何正确求助?哪些是违规求助? 2993833
关于积分的说明 8756390
捐赠科研通 2678258
什么是DOI,文献DOI怎么找? 1467137
科研通“疑难数据库(出版商)”最低求助积分说明 678578
邀请新用户注册赠送积分活动 670160