A systematic review of prediction models on arteriovenous fistula: Risk scores and machine learning approaches

医学 机器学习 人工智能 公制(单位) 血液透析 人口 预测建模 动静脉瘘 梅德林 校准 内科学 统计 外科 计算机科学 数学 运营管理 环境卫生 政治学 法学 经济
作者
Lingyan Meng,Pei Ho
出处
期刊:Journal of Vascular Access [SAGE]
标识
DOI:10.1177/11297298241237830
摘要

Objective: Failure-to-mature and early stenosis remains the Achille’s heel of hemodialysis arteriovenous fistula (AVF) creation. The maturation and patency of an AVF can be influenced by a variety of demographic, comorbidity, and anatomical factors. This study aims to review the prediction models of AVF maturation and patency with various risk scores and machine learning models. Data sources and review methods: Literature search was performed on PubMed, Scopus, and Embase to identify eligible articles. The quality of the studies was assessed using the Prediction model Risk Of Bias ASsessment (PROBAST) Tool. The performance (discrimination and calibration) of the included studies were extracted. Results: Fourteen studies (seven studies used risk score approaches; seven studies used machine learning approaches) were included in the review. Among them, 12 studies were rated as high or unclear “risk of bias.” Six studies were rated as high concern or unclear for “applicability.” C-statistics (Model discrimination metric) was reported in five studies using risk score approach (0.70–0.886) and three utilized machine learning methods (0.80–0.85). Model calibration was reported in three studies. Failure-to-mature risk score developed by one of the studies has been externally validated in three different patient populations, however the model discrimination degraded significantly (C-statistics: 0.519–0.53). Conclusion: The performance of existing predictive models for AVF maturation/patency is underreported. They showed satisfactory performance in their own study population. However, there was high risk of bias in methodology used to build some of the models. The reviewed models also lack external validation or had reduced performance in external cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林一存发布了新的文献求助10
刚刚
zw发布了新的文献求助10
刚刚
nana发布了新的文献求助10
3秒前
4秒前
4秒前
Jasper应助yx采纳,获得10
4秒前
酷波er应助tjpuzhang采纳,获得10
5秒前
米娅完成签到,获得积分10
5秒前
6秒前
7秒前
hbj完成签到,获得积分10
8秒前
从容芮应助li采纳,获得80
8秒前
10秒前
牛简简发布了新的文献求助10
11秒前
11秒前
lbc完成签到,获得积分10
12秒前
WizBLue发布了新的文献求助10
13秒前
13秒前
大个应助含蓄半邪采纳,获得10
15秒前
15秒前
15秒前
情怀应助yoyoo采纳,获得10
16秒前
16秒前
zjw发布了新的文献求助10
16秒前
16秒前
benben055发布了新的文献求助10
16秒前
zlzhang完成签到,获得积分10
16秒前
17秒前
崔win完成签到,获得积分20
17秒前
jia关闭了jia文献求助
18秒前
momo完成签到,获得积分10
18秒前
18秒前
大萱完成签到 ,获得积分10
19秒前
20秒前
萧诗双完成签到,获得积分10
20秒前
20秒前
tjpuzhang发布了新的文献求助10
20秒前
鲁杨发布了新的文献求助10
20秒前
21秒前
崔win发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386656
求助须知:如何正确求助?哪些是违规求助? 2999737
关于积分的说明 8786347
捐赠科研通 2685441
什么是DOI,文献DOI怎么找? 1470991
科研通“疑难数据库(出版商)”最低求助积分说明 680096
邀请新用户注册赠送积分活动 672679