Multi‐mode non‐linear inversion of Rayleigh wave dispersion curves with grey wolf optimization and cuckoo search algorithm

布谷鸟搜索 算法 反演(地质) 色散(光学) 模式(计算机接口) 数学 物理 计算机科学 光学 地质学 粒子群优化 地震学 构造学 操作系统
作者
Han Che,Hongyan Shen,Qingchun Li,Guoxin Liu,Chenrui Yang,Yunpeng Sun,Shuai Liu
出处
期刊:Near Surface Geophysics [Wiley]
卷期号:22 (3): 323-338
标识
DOI:10.1002/nsg.12296
摘要

Abstract Dispersion curve inversion is one of the core contents of Rayleigh wave data processing. However, the dispersion curve inversion has the characteristics of multi‐parameter, multi‐extremum as well as nonlinearity. In the face of Rayleigh wave data processing under complex seismic‐geological conditions, it is difficult to reconstruct an underground structure quickly and accurately apply a single global‐searching non‐linear inversion algorithm. For this reason, we proposed a strategy to invert multi‐order mode Rayleigh wave dispersion curves by combining with grey wolf optimization (GWO) and cuckoo search (CS) algorithms. On the basis of introducing the mechanism of iterative chaotic map with infinite collapses (ICMIC) and the strategy of dimension learning–based hunting (DLH), an improved GWO was developed that was called IDGWO (ICMIC and DLH GWO). After searching the near‐optimal region through IDGWO, the CS with a variable step‐size Lévy flight search mechanism was switched adaptively to complete the final inversion. The correctness of our method was verified by the multi‐order mode dispersion curve inversion of a six‐layer high‐velocity interlayer model. Then it was further applied to the processing of real seismic datasets. The research results show that our method fully utilizes the advantages of each of the two global‐searching non‐linear algorithms after integrating IDGWO and CS, while effectively balancing the ability between global search and local exploitation, further improving the convergence speed and inversion accuracy and having good anti‐noise performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大力沛萍发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
酷波er应助waa采纳,获得10
5秒前
5秒前
naonao发布了新的文献求助10
6秒前
烂萝卜完成签到,获得积分10
6秒前
6秒前
8秒前
hzw完成签到,获得积分10
9秒前
梅子黄时雨完成签到,获得积分10
9秒前
笑弯了眼发布了新的文献求助10
10秒前
zbb123发布了新的文献求助10
10秒前
chen应助丁叮采纳,获得10
10秒前
10秒前
赘婿应助华清引采纳,获得10
11秒前
11秒前
12秒前
13秒前
搜集达人应助老木虫采纳,获得10
15秒前
寻觅发布了新的文献求助10
15秒前
waa发布了新的文献求助10
15秒前
淡然语山完成签到 ,获得积分10
16秒前
123发布了新的文献求助10
16秒前
李爱国应助FISH采纳,获得10
17秒前
猪猪hero应助洛洛采纳,获得10
17秒前
xiaoyan发布了新的文献求助10
17秒前
咩咩完成签到,获得积分20
18秒前
ynlqjqx完成签到 ,获得积分10
19秒前
20秒前
21秒前
SHINING完成签到 ,获得积分20
21秒前
星辰大海应助寻觅采纳,获得10
22秒前
无餍应助洛洛采纳,获得10
22秒前
别止发布了新的文献求助10
24秒前
24秒前
balabala发布了新的文献求助10
25秒前
慕青应助123采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663