An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

控制(管理) 理论(学习稳定性) 计算机科学 控制系统 工程类 人工智能 电气工程 机器学习
作者
Shaozhong Guo,Jun Guo,Yunqing Zhang,Jinglai Wu
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2024-01-2331
摘要

<div class="section abstract"><div class="htmlview paragraph">Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration. Furthermore, a lower-level PID-based controller is designed to track the desired acceleration and compute the corresponding brake master cylinder pressure and throttle opening using an established inverse longitudinal dynamics model. Furthermore, to address vehicle stability during braking, an Anti-lock Braking System (ABS) controller is integrated with the proposed AERF. The effectiveness of the AERF is validated through software co-simulation and hardware-in-the-loop testing (HIL). The results demonstrate that the AERF can maintain a safe braking distance within 2 meters under Euro NCAP standard conditions, with excellent tracking performance of the actual braking deceleration and an error rate below 5%, ensuring a high level of system safety.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grace发布了新的文献求助30
刚刚
刚刚
1秒前
1秒前
王加通完成签到,获得积分10
3秒前
3秒前
自由的白羊完成签到 ,获得积分10
3秒前
3秒前
彩色德天完成签到,获得积分10
6秒前
6秒前
Lisby发布了新的文献求助10
7秒前
8秒前
熊熊熊发布了新的文献求助10
8秒前
9秒前
茼蒿完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助Puffkten采纳,获得10
10秒前
11秒前
cuicui发布了新的文献求助10
11秒前
trussie发布了新的文献求助10
11秒前
威朗普完成签到,获得积分20
12秒前
养不活的细胞完成签到,获得积分10
13秒前
紫薇发布了新的文献求助10
14秒前
充电宝应助王jj采纳,获得10
15秒前
华仔应助畅快的草莓采纳,获得10
17秒前
樊舒豪发布了新的文献求助10
17秒前
猪四郎完成签到,获得积分10
18秒前
18秒前
情怀应助优秀星星采纳,获得10
18秒前
18秒前
Hello应助土豪的糜采纳,获得10
19秒前
甘宁发布了新的文献求助10
19秒前
针真滴完成签到 ,获得积分10
22秒前
22秒前
阳光千筹完成签到 ,获得积分10
23秒前
繁星长明完成签到,获得积分10
23秒前
24秒前
25秒前
大模型应助faaami采纳,获得10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704