A comparative benchmarking and evaluation framework for heterogeneous network-based drug repositioning methods

标杆管理 可用性 计算机科学 可扩展性 工作流程 背景(考古学) 药物重新定位 过程(计算) 最佳实践 服务(商务) 数据挖掘 药品 数据库 人机交互 医学 精神科 经济 业务 古生物学 经济 营销 操作系统 生物 管理
作者
Yinghong Li,Yinqi Yang,Zhuohao Tong,Yu Wang,Qin Mi,Mingze Bai,Guizhao Liang,Bo Li,Kunxian Shu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (3) 被引量:1
标识
DOI:10.1093/bib/bbae172
摘要

Abstract Computational drug repositioning, which involves identifying new indications for existing drugs, is an increasingly attractive research area due to its advantages in reducing both overall cost and development time. As a result, a growing number of computational drug repositioning methods have emerged. Heterogeneous network-based drug repositioning methods have been shown to outperform other approaches. However, there is a dearth of systematic evaluation studies of these methods, encompassing performance, scalability and usability, as well as a standardized process for evaluating new methods. Additionally, previous studies have only compared several methods, with conflicting results. In this context, we conducted a systematic benchmarking study of 28 heterogeneous network-based drug repositioning methods on 11 existing datasets. We developed a comprehensive framework to evaluate their performance, scalability and usability. Our study revealed that methods such as HGIMC, ITRPCA and BNNR exhibit the best overall performance, as they rely on matrix completion or factorization. HINGRL, MLMC, ITRPCA and HGIMC demonstrate the best performance, while NMFDR, GROBMC and SCPMF display superior scalability. For usability, HGIMC, DRHGCN and BNNR are the top performers. Building on these findings, we developed an online tool called HN-DREP (http://hn-drep.lyhbio.com/) to facilitate researchers in viewing all the detailed evaluation results and selecting the appropriate method. HN-DREP also provides an external drug repositioning prediction service for a specific disease or drug by integrating predictions from all methods. Furthermore, we have released a Snakemake workflow named HN-DRES (https://github.com/lyhbio/HN-DRES) to facilitate benchmarking and support the extension of new methods into the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00完成签到,获得积分10
刚刚
华仔应助ZY采纳,获得10
刚刚
英姑应助光亮的初曼采纳,获得10
1秒前
1秒前
Di完成签到,获得积分10
1秒前
1秒前
浅碎时光完成签到,获得积分10
2秒前
amoresk发布了新的文献求助10
2秒前
fjj完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
GJ发布了新的文献求助10
3秒前
3秒前
U2发布了新的文献求助10
4秒前
阿飞飞飞完成签到,获得积分10
4秒前
4秒前
情怀应助feihua采纳,获得10
5秒前
5秒前
6秒前
Di发布了新的文献求助10
6秒前
00发布了新的文献求助10
6秒前
7秒前
pophy发布了新的文献求助10
7秒前
鲤鱼念云完成签到,获得积分10
8秒前
8秒前
dede完成签到,获得积分10
8秒前
Silence发布了新的文献求助10
9秒前
自然卷的春天完成签到,获得积分10
9秒前
10秒前
蓝酒窝发布了新的文献求助10
10秒前
Never完成签到,获得积分10
10秒前
12345678发布了新的文献求助40
10秒前
11秒前
朴实安珊完成签到,获得积分10
11秒前
楚雨荨完成签到,获得积分20
11秒前
12秒前
12秒前
layzhj完成签到,获得积分10
12秒前
熙熙发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
The theory of nuclear magnetic relaxation in liquids 2000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541285
求助须知:如何正确求助?哪些是违规求助? 3118468
关于积分的说明 9336103
捐赠科研通 2816457
什么是DOI,文献DOI怎么找? 1548412
邀请新用户注册赠送积分活动 721501
科研通“疑难数据库(出版商)”最低求助积分说明 712690