Self-Powered Medical Implants Using Triboelectric Technology

摩擦电效应 材料科学 复合材料
作者
Dong‐Min Lee,J.-B. Kim,Inah Hyun,Sang‐Woo Kim
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 533-543 被引量:4
标识
DOI:10.1021/accountsmr.3c00261
摘要

ConspectusElectronic medicines represent a class of biomedical technology that exploits electrical impulses to achieve diagnostic and therapeutic purposes. They allow patients to identify their physiological conditions themselves through effortless diagnosis methods, no longer confining treatment solely to medical examinations by physicians. Their clinical practices also operate as an alternative therapeutic approach to pharmacological interventions, wherein the electrical impulses are directly administered to biological tissues with minimal adverse effects. However, unlike wearable electronic medicines that offer the convenient replacement of their energy storages, medical implants require surgical removal for recharging energy storages, thereby imposing substantial physical and psychological burdens on patients. To address these challenges, many efforts are widely conducted to develop self-powered medical implants by utilizing energy harvesting technologies to extend the lifetime of energy storages.Compared to their applications in wearable devices, energy harvesting technologies for powering implantable electronics encounter technical constraints, because the human body exhibits the limited depth penetration of light sources and hemostasis reactions on body temperature. Triboelectric energy harvesting technologies have been highlighted as a promising energy solution of medical implants, exploiting diverse mechanical energy sources to generate electrical energy in vivo. Benefitting from the simple device structure favorable for device miniaturization, triboelectric nanogenerators (TENGs) are extensively explored. Herein, we introduce self-powered medical implants driven by the triboelectric mechanism, providing an exposition on their recent research trends. First, we describe the varying device structures and energy generation performances of TENGs, upon their mechanical energy sources with various frequency ranges. Most devices powered by high-frequency energy sources exhibit superior electrical output performances compared to those powered by low-frequency energy sources. However, the current status indicates that these energy solutions still fall short of meeting the energy consumption demands for their instantaneous application in commercialized electronic medicines. As potential solutions to meet the energy consumption demand, we describe material design strategies to aim for high output performance of triboelectric nanogenerators. Beyond their conventional role as mere power supplies for commercialized medical implants, battery-less electronic medicines based on TENGs hold the great potential for diverse clinical applications. This Account also presents our previous studies of self-powered electronic medicines to carry out clinical practices such as wound healing, tissue engineering, neurostimulation, neuroregeneration, and antibacterial activity. Lastly, we illustrate advanced technologies in materials and devices design with their applicability based on the implantation sites and clinical timeline of self-powered electronic medicines. We anticipate that this Account, by sharing our insights, will contribute to the future generation of outstanding achievements for potential readers engaged in the fields of bioelectronics, self-powered systems, and biomedical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
旺仔同学完成签到,获得积分10
4秒前
bkagyin应助窗外风雨阑珊采纳,获得10
4秒前
99发布了新的文献求助10
6秒前
aikeyan完成签到 ,获得积分10
6秒前
灰灰发布了新的文献求助10
7秒前
文6完成签到 ,获得积分10
9秒前
苏信怜完成签到,获得积分10
10秒前
细心的安双完成签到 ,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Fiona完成签到 ,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
沉静胜完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
arniu2008应助科研通管家采纳,获得10
12秒前
小药童应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
13秒前
Yangyang完成签到,获得积分10
13秒前
小玉完成签到,获得积分10
13秒前
倪好完成签到,获得积分10
13秒前
LL完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
兔兔完成签到 ,获得积分10
15秒前
化学课die表完成签到 ,获得积分10
15秒前
菠萝蜜完成签到,获得积分10
15秒前
16秒前
woommoow完成签到,获得积分10
16秒前
灰灰完成签到,获得积分10
16秒前
麦穗完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071