Self-Powered Medical Implants Using Triboelectric Technology

摩擦电效应 材料科学 复合材料
作者
Dong‐Min Lee,J.-B. Kim,Inah Hyun,Sang‐Woo Kim
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (5): 533-543 被引量:4
标识
DOI:10.1021/accountsmr.3c00261
摘要

ConspectusElectronic medicines represent a class of biomedical technology that exploits electrical impulses to achieve diagnostic and therapeutic purposes. They allow patients to identify their physiological conditions themselves through effortless diagnosis methods, no longer confining treatment solely to medical examinations by physicians. Their clinical practices also operate as an alternative therapeutic approach to pharmacological interventions, wherein the electrical impulses are directly administered to biological tissues with minimal adverse effects. However, unlike wearable electronic medicines that offer the convenient replacement of their energy storages, medical implants require surgical removal for recharging energy storages, thereby imposing substantial physical and psychological burdens on patients. To address these challenges, many efforts are widely conducted to develop self-powered medical implants by utilizing energy harvesting technologies to extend the lifetime of energy storages.Compared to their applications in wearable devices, energy harvesting technologies for powering implantable electronics encounter technical constraints, because the human body exhibits the limited depth penetration of light sources and hemostasis reactions on body temperature. Triboelectric energy harvesting technologies have been highlighted as a promising energy solution of medical implants, exploiting diverse mechanical energy sources to generate electrical energy in vivo. Benefitting from the simple device structure favorable for device miniaturization, triboelectric nanogenerators (TENGs) are extensively explored. Herein, we introduce self-powered medical implants driven by the triboelectric mechanism, providing an exposition on their recent research trends. First, we describe the varying device structures and energy generation performances of TENGs, upon their mechanical energy sources with various frequency ranges. Most devices powered by high-frequency energy sources exhibit superior electrical output performances compared to those powered by low-frequency energy sources. However, the current status indicates that these energy solutions still fall short of meeting the energy consumption demands for their instantaneous application in commercialized electronic medicines. As potential solutions to meet the energy consumption demand, we describe material design strategies to aim for high output performance of triboelectric nanogenerators. Beyond their conventional role as mere power supplies for commercialized medical implants, battery-less electronic medicines based on TENGs hold the great potential for diverse clinical applications. This Account also presents our previous studies of self-powered electronic medicines to carry out clinical practices such as wound healing, tissue engineering, neurostimulation, neuroregeneration, and antibacterial activity. Lastly, we illustrate advanced technologies in materials and devices design with their applicability based on the implantation sites and clinical timeline of self-powered electronic medicines. We anticipate that this Account, by sharing our insights, will contribute to the future generation of outstanding achievements for potential readers engaged in the fields of bioelectronics, self-powered systems, and biomedical engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助开心采纳,获得10
1秒前
大芳儿发布了新的文献求助10
2秒前
Xjx6519发布了新的文献求助10
2秒前
浮游应助明亮紫易采纳,获得10
2秒前
4秒前
Tcell完成签到,获得积分10
9秒前
胡图图发布了新的文献求助10
9秒前
无极微光应助科研通管家采纳,获得20
10秒前
pluto应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
shhoing应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
玄风应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
张宇豪应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
玄风应助科研通管家采纳,获得10
11秒前
Verity应助科研通管家采纳,获得10
11秒前
厚朴应助开心采纳,获得10
12秒前
大龙哥886应助Xjx6519采纳,获得10
15秒前
在水一方应助zgsjymysmyy采纳,获得30
15秒前
echo发布了新的文献求助10
16秒前
16秒前
zhoumaoyuan发布了新的文献求助10
17秒前
天份z完成签到,获得积分10
17秒前
共享精神应助超越自我4641采纳,获得10
17秒前
23秒前
柳条儿发布了新的文献求助10
25秒前
26秒前
cx330完成签到 ,获得积分10
26秒前
优雅山柏发布了新的文献求助10
26秒前
anders完成签到 ,获得积分10
27秒前
冷艳的靳关注了科研通微信公众号
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566