织物
纱线
材料科学
水分
润湿
计算机科学
复合材料
纤维
可视化
多边形网格
机械工程
计算机图形学(图像)
工程类
人工智能
作者
Aihua Mao,Wenbo Dong,Chaoqiang Xie,Huamin Wang,Yong-Jin Liu,Guiqing Li,Ying He
出处
期刊:IEEE Transactions on Visualization and Computer Graphics
[Institute of Electrical and Electronics Engineers]
日期:2023-12-01
卷期号:29 (12): 5250-5264
被引量:2
标识
DOI:10.1109/tvcg.2022.3206579
摘要
Simulating liquid-textile interaction has received great attention in computer graphics recently. Most existing methods take textiles as particles or parameterized meshes. Although these methods can generate visually pleasing results, they cannot simulate water content at a microscopic level due to the lack of geometrically modeling of textile's anisotropic structure. In this paper, we develop a method for yarn-level simulation of hygroscopicity of textiles and evaluate it using various quantitative metrics. We model textiles in a fiber-yarn-fabric multi-scale manner and consider the dynamic coupled physical mechanisms of liquid spreading, including wetting, wicking, moisture sorption/desorption, and transient moisture-heat transfer in textiles. Our method can accurately simulate liquid spreading on textiles with different fiber materials and geometrical structures with consideration of air temperatures and humidity conditions. It visualizes the hygroscopicity of textiles to demonstrate their moisture management ability. We conduct qualitative and quantitative experiments to validate our method and explore various factors to analyze their influence on liquid spreading and hygroscopicity of textiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI