尼亚尔
光催化
材料科学
层状双氢氧化物
化学工程
试剂
纳米技术
吸附
催化作用
化学
复合材料
有机化学
金属间化合物
合金
工程类
作者
Guixiang Ding,Zhi Liu,Qiu Wang,Yang Li,Wentao Liu,Yang Liu
标识
DOI:10.1016/j.jcis.2022.09.048
摘要
The conversion of carbon dioxide (CO2) into value-added C1 and/or C2 chemicals by photocatalytic technology has been regarded as a "one stone-two birds" solution for environmental degradation and energy shortage. In this work, a novel Z-scheme mechanism photocatalyst of Ag-modified α-Fe2O3 spherical particles interspersed on hierarchical flower-like layered nickel-aluminum hydroxides (NiAl-LDH) microspheres (α-Fe2O3/Ag/NiAl-LDH, designated as FALDH) is successfully prepared by a combined in-situ hydrothermal and grating strategy. As expected, the optimal sample of FALDH-5/10 exhibits significantly enhanced photocatalytic performance for CO2 reduction with a highest CO yield up to 46.7 μmol g-1 under simulated sunlight without any sacrificial reagents and photosensitizers, compared with the pristine NiAl-LDH, binary Ag/NiAl-LDH and α-Fe2O3/NiAl-LDH, as well as surpassing the previously reported LDH-based counterparts. The high activity is ascribed to strong interaction between the NiAl-LDH microspheres and highly-dispersed Ag/α-Fe2O3 particles, boosted CO2 adsorption capacity and optimized bandgap from α-Fe2O3, and increased utilization efficiency of light from Ag. This study offers a new idea for more efficient stimulating the photocatalytic activity of LDHs by the construction of Z-scheme heterojunction with the aid of plasmonic metal(s) for CO2 photoreduction, and is expected to be employed to other photocatalytic applications effectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI