Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and erosions using a convolutional neural network

胶囊内镜 卷积神经网络 医学 人工智能 结肠镜检查 图像处理 诊断准确性 模式识别(心理学) 胃肠病学 图像(数学) 放射科 内科学 计算机科学 结直肠癌 癌症
作者
Tiago Ribeiro,Miguel Mascarenhas,João Afonso,Hélder Cardoso,Patrícia Andrade,Susana Lopes,João Ferreira,Miguel Mascarenhas Saraiva,Guilherme Macedo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (12): 2282-2288 被引量:5
标识
DOI:10.1111/jgh.16011
摘要

Colon capsule endoscopy (CCE) has become a minimally invasive alternative for conventional colonoscopy. Nevertheless, each CCE exam produces between 50 000 and 100 000 frames, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNNs) are a type of artificial intelligence (AI) architecture with high performance in image analysis. This study aims to develop a CNN model for the identification of colonic ulcers and erosions in CCE images.A CNN model was designed using a database of CCE images. A total of 124 CCE exams performed between 2010 and 2020 in two centers were reviewed. For CNN development, a total of 37 319 images were extracted, 33 749 showing normal colonic mucosa and 3570 showing colonic ulcers and erosions. Datasets for CNN training, validation, and testing were created. The performance of the algorithm was evaluated regarding its sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve.The network had a sensitivity of 96.9% and a specificity of 99.9% specific for the detection of colonic ulcers and erosions. The algorithm had an overall accuracy of 99.6%. The area under the curve was 1.00. The CNN had an image processing capacity of 90 frames per second.The developed algorithm is the first CNN-based model to accurately detect ulcers and erosions in CCE images, also providing a good image processing performance. The development of these AI systems may contribute to improve both the diagnostic and time efficiency of CCE exams, facilitating CCE adoption to routine clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
溦小完成签到,获得积分20
2秒前
3秒前
orixero应助LIUYI采纳,获得10
4秒前
5秒前
wsx完成签到,获得积分10
6秒前
7秒前
无花果应助五小采纳,获得10
7秒前
uujj完成签到,获得积分20
8秒前
8秒前
赘婿应助优雅的怀莲采纳,获得10
9秒前
wsx发布了新的文献求助10
10秒前
Jemezs发布了新的文献求助10
11秒前
12秒前
Koi完成签到,获得积分10
13秒前
曾经紫伊完成签到,获得积分10
15秒前
wuzhizhiya完成签到,获得积分10
16秒前
小蘑菇应助11采纳,获得10
16秒前
Singularity发布了新的文献求助10
17秒前
包容的初南完成签到,获得积分10
17秒前
17秒前
大个应助眼睛大迎波采纳,获得10
17秒前
18秒前
18秒前
JamesPei应助Jemezs采纳,获得10
19秒前
水杯不离手完成签到 ,获得积分10
19秒前
帅气的马里奥完成签到 ,获得积分10
19秒前
Biao发布了新的文献求助10
22秒前
科研通AI2S应助11采纳,获得10
23秒前
23秒前
淡然以柳完成签到,获得积分10
27秒前
orange发布了新的文献求助10
28秒前
28秒前
JamesPei应助Biao采纳,获得10
29秒前
30秒前
30秒前
Orange应助Singularity采纳,获得10
32秒前
lhl完成签到,获得积分10
33秒前
34秒前
zzz发布了新的文献求助10
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139146
求助须知:如何正确求助?哪些是违规求助? 2790083
关于积分的说明 7793577
捐赠科研通 2446452
什么是DOI,文献DOI怎么找? 1301175
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102