已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and erosions using a convolutional neural network

胶囊内镜 卷积神经网络 医学 人工智能 结肠镜检查 图像处理 诊断准确性 模式识别(心理学) 胃肠病学 图像(数学) 放射科 内科学 计算机科学 结直肠癌 癌症
作者
Tiago Ribeiro,Miguel Mascarenhas,João Afonso,Hélder Cardoso,Patrícia Andrade,Susana Lopes,João Ferreira,Miguel Mascarenhas Saraiva,Guilherme Macedo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (12): 2282-2288 被引量:5
标识
DOI:10.1111/jgh.16011
摘要

Colon capsule endoscopy (CCE) has become a minimally invasive alternative for conventional colonoscopy. Nevertheless, each CCE exam produces between 50 000 and 100 000 frames, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNNs) are a type of artificial intelligence (AI) architecture with high performance in image analysis. This study aims to develop a CNN model for the identification of colonic ulcers and erosions in CCE images.A CNN model was designed using a database of CCE images. A total of 124 CCE exams performed between 2010 and 2020 in two centers were reviewed. For CNN development, a total of 37 319 images were extracted, 33 749 showing normal colonic mucosa and 3570 showing colonic ulcers and erosions. Datasets for CNN training, validation, and testing were created. The performance of the algorithm was evaluated regarding its sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve.The network had a sensitivity of 96.9% and a specificity of 99.9% specific for the detection of colonic ulcers and erosions. The algorithm had an overall accuracy of 99.6%. The area under the curve was 1.00. The CNN had an image processing capacity of 90 frames per second.The developed algorithm is the first CNN-based model to accurately detect ulcers and erosions in CCE images, also providing a good image processing performance. The development of these AI systems may contribute to improve both the diagnostic and time efficiency of CCE exams, facilitating CCE adoption to routine clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助戴哈哈采纳,获得10
4秒前
4秒前
SGOM完成签到,获得积分10
4秒前
萤lueluelue发布了新的文献求助10
8秒前
9秒前
你求我一下完成签到,获得积分10
10秒前
10秒前
麻辣鱼头发布了新的文献求助10
14秒前
依依完成签到 ,获得积分10
16秒前
乐乐应助Fury采纳,获得10
17秒前
18秒前
哈哈完成签到 ,获得积分10
19秒前
mumufan完成签到,获得积分10
20秒前
23秒前
27秒前
大白完成签到 ,获得积分10
27秒前
千纸鹤完成签到 ,获得积分10
27秒前
风清扬发布了新的文献求助10
28秒前
聪慧不二完成签到 ,获得积分10
30秒前
joanna完成签到,获得积分10
30秒前
31秒前
Jes关闭了Jes文献求助
33秒前
一卷钢丝球完成签到 ,获得积分10
34秒前
炸鸡完成签到 ,获得积分10
35秒前
kalisu24发布了新的文献求助10
39秒前
xutong de完成签到,获得积分10
43秒前
47秒前
科研通AI2S应助夺命倩倩儿采纳,获得10
49秒前
52秒前
53秒前
pxb完成签到,获得积分10
54秒前
洪焕良完成签到,获得积分10
59秒前
59秒前
晚意完成签到 ,获得积分10
59秒前
雷锋发布了新的文献求助10
59秒前
平淡访冬完成签到 ,获得积分10
1分钟前
李霞完成签到 ,获得积分20
1分钟前
1分钟前
奈布完成签到 ,获得积分10
1分钟前
医疗废物专用车乘客完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234