A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion

燃烧 化学 庚烷 点火系统 冲击管 柴油 层流火焰速度 热力学 材料科学 预混火焰 有机化学 冲击波 燃烧室 物理
作者
Leilei Xu,Yachao Chang,Mark Treacy,Yuchen Zhou,Ming Jia,Xue‐Song Bai
出处
期刊:Fuel [Elsevier]
卷期号:331: 125830-125830 被引量:82
标识
DOI:10.1016/j.fuel.2022.125830
摘要

Progressively stricter pollutant emission targets in international agreements have shifted the focus of combustion research to low carbon fuels. Ammonia is recognized as one of the promising energy vectors for next-generation power production. Due to the low flame speed and high auto-ignition temperature, ammonia is often burned with a high reactivity pilot fuel (e.g. diesel). However, chemical kinetic mechanisms describing the combustion of ammonia and large hydrocarbon fuels (such as n-heptane, a surrogate of diesel) are less developed. In this work, a skeletal chemical kinetic mechanism for n-heptane/ammonia blend fuels is proposed using a joint decoupling methodology and optimization algorithm. A sensitivity analysis of the ignition delay times of the ammonia/n-heptane mixture is performed to identify the dominant reactions. A genetic algorithm is used to optimize the mechanism further. The final skeletal mechanism is made up of 69 species and 389 reactions. The skeletal ammonia/n-heptane mechanism is validated against the experimental data for combustion of pure ammonia, ammonia/hydrogen and ammonia/n-heptane mixtures, including the global combustion characteristic parameters such as ignition delay times measured in shock tubes or rapid compression machines, laminar burning velocities measured in heat flux burners or spherical flame vessels, and species data measured in jet-stirred reactors. Comparing the results from the skeletal mechanism with those from other mechanisms from the literature is conducted to evaluate the mechanism further. The present skeletal mechanism can well predict the combustion processes for a wide range of conditions, and the mechanism is computationally efficient, showing good potential to model ammonia/n-heptane combustion with good accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的初南完成签到,获得积分10
1秒前
1秒前
厚朴1214发布了新的文献求助10
1秒前
脑洞疼应助竹园采纳,获得10
2秒前
Summer完成签到,获得积分10
2秒前
youayou发布了新的文献求助10
2秒前
Lx完成签到,获得积分10
3秒前
孔难破完成签到,获得积分10
3秒前
蒋时晏应助伍六柒采纳,获得40
3秒前
3秒前
洛必达完成签到,获得积分10
3秒前
蒋时晏应助pursuingx采纳,获得30
3秒前
zzn应助嵇之云采纳,获得10
3秒前
curtainai完成签到,获得积分10
5秒前
5秒前
泡芙完成签到,获得积分10
5秒前
5秒前
5秒前
FashionBoy应助从容前行采纳,获得10
6秒前
Xide完成签到,获得积分10
6秒前
未来发布了新的文献求助30
6秒前
sunnyqqz发布了新的文献求助10
6秒前
瑞谦完成签到 ,获得积分10
6秒前
钦川发布了新的文献求助10
7秒前
7秒前
Yasing发布了新的文献求助10
7秒前
Ruuo616完成签到 ,获得积分10
7秒前
8秒前
Jack80应助ataybabdallah采纳,获得30
8秒前
科研通AI2S应助ataybabdallah采纳,获得30
8秒前
8秒前
9秒前
甄不错完成签到,获得积分20
9秒前
李爱国应助Clare采纳,获得10
9秒前
ccherty完成签到,获得积分10
10秒前
limbo发布了新的文献求助10
10秒前
10秒前
我是老大应助Dominic采纳,获得30
11秒前
wu发布了新的文献求助10
11秒前
海鸥发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319858
求助须知:如何正确求助?哪些是违规求助? 2951165
关于积分的说明 8555859
捐赠科研通 2628337
什么是DOI,文献DOI怎么找? 1438145
科研通“疑难数据库(出版商)”最低求助积分说明 666564
邀请新用户注册赠送积分活动 652689