A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion

燃烧 化学 庚烷 点火系统 冲击管 柴油 层流火焰速度 热力学 材料科学 预混火焰 有机化学 冲击波 燃烧室 物理
作者
Leilei Xu,Yachao Chang,Mark Treacy,Yuchen Zhou,Ming Jia,Xue‐Song Bai
出处
期刊:Fuel [Elsevier]
卷期号:331: 125830-125830 被引量:82
标识
DOI:10.1016/j.fuel.2022.125830
摘要

Progressively stricter pollutant emission targets in international agreements have shifted the focus of combustion research to low carbon fuels. Ammonia is recognized as one of the promising energy vectors for next-generation power production. Due to the low flame speed and high auto-ignition temperature, ammonia is often burned with a high reactivity pilot fuel (e.g. diesel). However, chemical kinetic mechanisms describing the combustion of ammonia and large hydrocarbon fuels (such as n-heptane, a surrogate of diesel) are less developed. In this work, a skeletal chemical kinetic mechanism for n-heptane/ammonia blend fuels is proposed using a joint decoupling methodology and optimization algorithm. A sensitivity analysis of the ignition delay times of the ammonia/n-heptane mixture is performed to identify the dominant reactions. A genetic algorithm is used to optimize the mechanism further. The final skeletal mechanism is made up of 69 species and 389 reactions. The skeletal ammonia/n-heptane mechanism is validated against the experimental data for combustion of pure ammonia, ammonia/hydrogen and ammonia/n-heptane mixtures, including the global combustion characteristic parameters such as ignition delay times measured in shock tubes or rapid compression machines, laminar burning velocities measured in heat flux burners or spherical flame vessels, and species data measured in jet-stirred reactors. Comparing the results from the skeletal mechanism with those from other mechanisms from the literature is conducted to evaluate the mechanism further. The present skeletal mechanism can well predict the combustion processes for a wide range of conditions, and the mechanism is computationally efficient, showing good potential to model ammonia/n-heptane combustion with good accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jocelyn7完成签到,获得积分10
1秒前
wanyanjin应助yaoyao采纳,获得10
2秒前
Stephanie完成签到,获得积分20
2秒前
C_Cppp发布了新的文献求助10
2秒前
大抽是谁完成签到,获得积分10
2秒前
3秒前
Q0应助Hangerli采纳,获得20
3秒前
3秒前
黎土土发布了新的文献求助50
5秒前
5秒前
大抽是谁发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助公茂源采纳,获得30
6秒前
失眠的凝雁完成签到,获得积分10
6秒前
科研通AI5应助赖道之采纳,获得10
6秒前
Menand完成签到,获得积分10
7秒前
学者发布了新的文献求助10
7秒前
清新完成签到,获得积分10
7秒前
陶弈衡完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
愉快盼曼发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
nemo发布了新的文献求助10
13秒前
学术蝗虫完成签到,获得积分10
13秒前
justin完成签到,获得积分10
14秒前
西瓜啵啵完成签到,获得积分10
16秒前
小周完成签到,获得积分10
16秒前
Louki完成签到 ,获得积分10
16秒前
温暖的颜演完成签到 ,获得积分10
17秒前
yudandan@CJLU发布了新的文献求助10
18秒前
科研小民工应助_呱_采纳,获得50
18秒前
愉快盼曼完成签到,获得积分20
18秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
19秒前
123完成签到,获得积分10
19秒前
13679165979发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808