Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation

计算机科学 人工智能 分割 深度学习 稳健性(进化) 机器学习 数字化病理学 模式识别(心理学) 过程(计算) 人工神经网络 生物化学 基因 操作系统 化学
作者
Ahmed Ben Hamida,Maxime Devanne,Jonathan Weber,Caroline Truntzer,Valentin Dérangère,François Ghiringhelli,Germain Forestier,Cédric Wemmert
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:133: 102407-102407 被引量:8
标识
DOI:10.1016/j.artmed.2022.102407
摘要

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助嘉嘉琦采纳,获得10
刚刚
Ava应助WSGQT采纳,获得10
1秒前
Jiang发布了新的文献求助10
2秒前
超帅听枫完成签到,获得积分20
2秒前
SYLH应助poli采纳,获得10
3秒前
生菜完成签到,获得积分10
3秒前
bxxxxx应助FFF采纳,获得30
3秒前
senhoo完成签到,获得积分10
4秒前
4秒前
JamesPei应助Ana采纳,获得10
4秒前
superbada发布了新的文献求助30
4秒前
希望天下0贩的0应助雪碧采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
坦率的匪应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
pcr163应助科研通管家采纳,获得80
8秒前
大模型应助科研通管家采纳,获得30
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI5应助舒服的乐曲采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
坦率的匪应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
坦率的匪应助科研通管家采纳,获得10
8秒前
8秒前
quhayley应助科研通管家采纳,获得10
8秒前
要减肥岩应助科研通管家采纳,获得10
9秒前
彭于彦祖应助培爷采纳,获得30
9秒前
Mininine完成签到,获得积分10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
quhayley应助科研通管家采纳,获得10
9秒前
LUJyyyy完成签到,获得积分10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得50
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021