亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation

计算机科学 人工智能 分割 深度学习 稳健性(进化) 机器学习 数字化病理学 模式识别(心理学) 过程(计算) 人工神经网络 一般化 生物化学 基因 数学 操作系统 数学分析 化学
作者
Amina Ben Hamida,Maxime Devanne,Jonathan Weber,Caroline Truntzer,Valentin Dérangère,François Ghiringhelli,Germain Forestier,Cédric Wemmert
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:133: 102407-102407 被引量:15
标识
DOI:10.1016/j.artmed.2022.102407
摘要

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ButterFly完成签到,获得积分10
1秒前
13秒前
爆米花应助5t5采纳,获得10
18秒前
自觉冰巧完成签到 ,获得积分10
21秒前
共享精神应助yanyanmi采纳,获得10
23秒前
26秒前
28秒前
5t5发布了新的文献求助10
29秒前
32秒前
jieen发布了新的文献求助20
38秒前
棕榈完成签到,获得积分10
40秒前
41秒前
充电宝应助单薄的夜南采纳,获得10
42秒前
chenchen发布了新的文献求助10
43秒前
互助举报Daisy求助涉嫌违规
46秒前
昵称完成签到,获得积分0
54秒前
小二郎应助chenchen采纳,获得10
57秒前
uikymh完成签到 ,获得积分0
59秒前
可爱的函函应助解解闷采纳,获得10
1分钟前
十夜完成签到,获得积分10
1分钟前
1分钟前
白昼懒得想完成签到,获得积分10
1分钟前
1分钟前
萧晓发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得20
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
棕榈发布了新的文献求助10
1分钟前
1分钟前
解解闷发布了新的文献求助10
1分钟前
1分钟前
潇潇完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
SciGPT应助棕榈采纳,获得10
2分钟前
咩咩完成签到 ,获得积分10
2分钟前
yanyanmi发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870669
求助须知:如何正确求助?哪些是违规求助? 6464650
关于积分的说明 15664625
捐赠科研通 4986812
什么是DOI,文献DOI怎么找? 2688956
邀请新用户注册赠送积分活动 1631347
关于科研通互助平台的介绍 1589414