已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation

计算机科学 人工智能 分割 深度学习 稳健性(进化) 机器学习 数字化病理学 模式识别(心理学) 过程(计算) 人工神经网络 生物化学 基因 操作系统 化学
作者
Ahmed Ben Hamida,Maxime Devanne,Jonathan Weber,Caroline Truntzer,Valentin Dérangère,François Ghiringhelli,Germain Forestier,Cédric Wemmert
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:133: 102407-102407 被引量:8
标识
DOI:10.1016/j.artmed.2022.102407
摘要

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助淼淼之锋采纳,获得10
刚刚
pm完成签到 ,获得积分10
1秒前
伊绵好完成签到,获得积分10
1秒前
北城栀子刂AZ完成签到 ,获得积分10
2秒前
清风明月发布了新的文献求助10
4秒前
6秒前
airsh完成签到,获得积分10
6秒前
8秒前
11秒前
12秒前
小张发布了新的文献求助10
13秒前
墨点完成签到 ,获得积分10
14秒前
15秒前
如果发布了新的文献求助10
16秒前
周可以完成签到,获得积分10
17秒前
科研Mayormm完成签到 ,获得积分10
18秒前
彭于晏应助Cloud采纳,获得10
18秒前
zz发布了新的文献求助10
20秒前
碳酸芙兰发布了新的文献求助10
20秒前
彭于晏应助荞麦面采纳,获得10
25秒前
Cloud完成签到,获得积分10
25秒前
25秒前
ai豆的鱼发布了新的文献求助10
25秒前
林lin完成签到,获得积分10
29秒前
可耐的思远完成签到 ,获得积分10
29秒前
科研通AI2S应助清风明月采纳,获得10
31秒前
健康幸福平安完成签到,获得积分10
32秒前
JUST完成签到,获得积分10
33秒前
35秒前
36秒前
38秒前
小马甲应助单纯的雅香采纳,获得10
38秒前
38秒前
充电宝应助hphhh采纳,获得10
38秒前
疯狂的师发布了新的文献求助30
39秒前
39秒前
41秒前
Hosea发布了新的文献求助10
43秒前
莫言发布了新的文献求助10
43秒前
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825904
捐赠科研通 2454242
什么是DOI,文献DOI怎么找? 1306225
科研通“疑难数据库(出版商)”最低求助积分说明 627679
版权声明 601503