已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation

计算机科学 人工智能 分割 深度学习 稳健性(进化) 机器学习 数字化病理学 模式识别(心理学) 过程(计算) 人工神经网络 一般化 生物化学 基因 数学 操作系统 数学分析 化学
作者
Amina Ben Hamida,Maxime Devanne,Jonathan Weber,Caroline Truntzer,Valentin Dérangère,François Ghiringhelli,Germain Forestier,Cédric Wemmert
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:133: 102407-102407 被引量:15
标识
DOI:10.1016/j.artmed.2022.102407
摘要

Recently, Artificial Intelligence namely Deep Learning methods have revolutionized a wide range of domains and applications. Besides, Digital Pathology has so far played a major role in the diagnosis and the prognosis of tumors. However, the characteristics of the Whole Slide Images namely the gigapixel size, high resolution and the shortage of richly labeled samples have hindered the efficiency of classical Machine Learning methods. That goes without saying that traditional methods are poor in generalization to different tasks and data contents. Regarding the success of Deep learning when dealing with Large Scale applications, we have resorted to the use of such models for histopathological image segmentation tasks. First, we review and compare the classical UNet and Att-UNet models for colon cancer WSI segmentation in a sparsely annotated data scenario. Then, we introduce novel enhanced models of the Att-UNet where different schemes are proposed for the skip connections and spatial attention gates positions in the network. In fact, spatial attention gates assist the training process and enable the model to avoid irrelevant feature learning. Alternating the presence of such modules namely in our Alter-AttUNet model adds robustness and ensures better image segmentation results. In order to cope with the lack of richly annotated data in our AiCOLO colon cancer dataset, we suggest the use of a multi-step training strategy that also deals with the WSI sparse annotations and unbalanced class issues. All proposed methods outperform state-of-the-art approaches but Alter-AttUNet generates the best compromise between accurate results and light network. The model achieves 95.88% accuracy with our sparse AiCOLO colon cancer datasets. Finally, to evaluate and validate our proposed architectures we resort to publicly available WSI data: the NCT-CRC-HE-100K, the CRC-5000 and the Warwick colon cancer histopathological dataset. Respective accuracies of 99.65%, 99.73% and 79.03% were reached. A comparison with state-of-art approaches is established to view and compare the key solutions for histopathological image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
艾卡西亚毛毛雨完成签到 ,获得积分10
6秒前
相识发布了新的文献求助10
6秒前
赘婿应助拼搏的电源采纳,获得10
9秒前
FashionBoy应助叽歪提采纳,获得10
10秒前
汪鸡毛完成签到 ,获得积分10
16秒前
16秒前
20秒前
Rain完成签到,获得积分10
23秒前
完美世界应助小鱼采纳,获得10
23秒前
24秒前
zm完成签到,获得积分10
24秒前
yangjinru完成签到 ,获得积分10
24秒前
野性的胡萝卜完成签到,获得积分10
25秒前
慌慌完成签到 ,获得积分10
26秒前
玖依完成签到,获得积分10
27秒前
加油杨完成签到 ,获得积分10
27秒前
香蕉子骞完成签到 ,获得积分10
28秒前
123发布了新的文献求助20
29秒前
daigang完成签到 ,获得积分10
30秒前
平常的羊完成签到 ,获得积分10
33秒前
Akim应助123采纳,获得10
34秒前
Hanny发布了新的文献求助10
35秒前
余文乐完成签到 ,获得积分10
35秒前
meow完成签到 ,获得积分10
36秒前
西西完成签到,获得积分10
36秒前
37秒前
心随以动完成签到 ,获得积分10
37秒前
你是我的唯一完成签到 ,获得积分10
38秒前
王二完成签到,获得积分10
40秒前
土豆你个西红柿完成签到 ,获得积分10
41秒前
123完成签到,获得积分10
41秒前
43秒前
naive完成签到,获得积分10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581261
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380921
捐赠科研通 3673784
什么是DOI,文献DOI怎么找? 2024768
邀请新用户注册赠送积分活动 1058578
科研通“疑难数据库(出版商)”最低求助积分说明 945295