Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior

过度拟合 先验概率 人工智能 迭代重建 计算机科学 卷积神经网络 稳健性(进化) 贝叶斯概率 图像质量 模式识别(心理学) 图像(数学) 计算机视觉 人工神经网络 生物化学 基因 化学
作者
Viswanath P. Sudarshan,K. V. Reddy,Mohana Singh,Jayavardhana Gubbi,Arpan Pal
出处
期刊:Lecture Notes in Computer Science 卷期号:: 145-155 被引量:1
标识
DOI:10.1007/978-3-031-17247-2_15
摘要

Model-based image reconstruction (MBIR) methods using convolutional neural networks (CNNs) as priors have demonstrated superior image quality and robustness compared to conventional methods. Studies have explored MBIR combined with supervised and unsupervised denoising techniques for image reconstruction in magnetic resonance imaging (MRI) and positron emission tomography (PET). Unsupervised methods like the deep image prior (DIP) have shown promising results and are less prone to hallucinations. However, since the noisy image is used as a reference, strategies to prevent overfitting are unclear. Recently, Bayesian DIP (BDIP) networks that model uncertainty tend to prevent overfitting without requiring early stopping. However, BDIP has not been studied with data-fidelity term for image reconstruction. In this work, we propose an MBIR framework with a modified BDIP. Specifically, a novel uncertainty-based penalty is included to the BDIP to improve reconstruction across iterations. Results on simulated and in vivo data show that our method yields improved reconstruction compared to methods with conventional priors and typical DIP without uncertainty. Notably, the uncertainty maps across iterations provide insights on improving image quality and can aid in risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
复杂翠彤完成签到,获得积分10
刚刚
一一应助科研通管家采纳,获得10
刚刚
甜蜜晓绿完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
DawudShan发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223