Spatial characteristics and driving factors of urban flooding in Chinese megacities

特大城市 城市化 大洪水 洪水(心理学) 防洪减灾 北京 自然灾害 环境科学 地理 自然地理学 中国 气象学 生态学 心理学 生物 考古 心理治疗师
作者
Yongheng Wang,Chunlin Li,Miao Liu,Qian Cui,Hao Wang,Jianshu LV,Binglun Li,Zaiping Xiong,Yuanman Hu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:613: 128464-128464 被引量:65
标识
DOI:10.1016/j.jhydrol.2022.128464
摘要

Changes in hydrological processes caused by rapid urbanization lead to the growing incidence of urban flooding, which is a major challenge to urban sustainability. Urban floods have seriously threatened the natural environment and human life. Understanding the spatial patterns and influencing factors of urban flooding has important implications for mitigating urban flood hazards. Previous studies have demonstrated the impact of natural and human factors on urban flooding, but a comprehensive understanding of the mechanisms of urban flooding requires appropriate scales and evidence from multiple cities. In this study, 1201 flood records from 2015 to 2020 in 9 megacities (including Beijing, Tianjin, Shanghai, Xi’an, Nanjing, Wuhan, Guangzhou, Shenzhen, Shenyang) in China were used to investigate the spatial characteristics and driving factors of urban flooding. A combination of multiple stepwise regression and boosted regression tree (BRT) models was used to reveal the flood driving mechanism in megacities. The results indicated that flood events in 9 cities presented an aggregation effect, but the spatial characteristics and kernel density were different between coastal and inland cities. At all scales (1 km, 3 km, 5 km), physical geomorphic features (2D and 3D landscapes) have a high contribution to urban flooding, especially patch density, density of buildings and building shape coefficients. The relative contributions of the 2D and 3D landscape pattern factors increased by 43.8 % and 36.2 % as the grid scale increased from 1 km to 5 km, respectively. However, the relative contributions of topography, meteorology and drainage capacity factors decreased by 47.6 %, 39.0 % and 33.2 %, respectively. At a large scale (5 km), the correlation of driving factors for urban flooding was stronger, and the dominant factors were more obvious. At a small scale (1 km), the contribution of driving factors is relatively average. The scale effect significantly affects urban flooding. which suggests that an appropriate scale can more accurately capture the dominant drivers of urban flooding. Therefore, a novel method that integrates the stepwise regression model and BRT model were presented to quantify the complex relationship between urban flooding and driving factors under various analysis scales. The methods and results proposed by our study provided important insights and perspectives for urban flood risk mitigation and urban planning through multiscale analysis of flood driving mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu发布了新的文献求助10
刚刚
东郭寻凝发布了新的文献求助10
1秒前
一汪发布了新的文献求助10
1秒前
2秒前
高分子狗发布了新的文献求助10
2秒前
2秒前
悦兮完成签到 ,获得积分10
4秒前
susu1019完成签到,获得积分10
5秒前
daisy发布了新的文献求助20
7秒前
nbbyysnbb应助听说采纳,获得10
7秒前
点酒成诗发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
yotta应助瘦瘦不乐采纳,获得10
12秒前
小赵发布了新的文献求助10
14秒前
称心蓉发布了新的文献求助10
14秒前
15秒前
司空豁发布了新的文献求助10
15秒前
15秒前
Foch发布了新的文献求助10
16秒前
17秒前
微微又潇潇完成签到,获得积分10
17秒前
小肚溜圆完成签到,获得积分10
18秒前
19秒前
大橙子应助1112采纳,获得10
19秒前
U2发布了新的文献求助10
19秒前
如初发布了新的文献求助10
20秒前
changjing5638完成签到,获得积分10
20秒前
研友_nq2YgZ完成签到 ,获得积分10
20秒前
23秒前
27秒前
虚幻姒完成签到,获得积分10
30秒前
菜饼发布了新的文献求助10
31秒前
甜甜的文轩完成签到,获得积分10
33秒前
35秒前
Dding应助qq1640564935采纳,获得10
37秒前
星辰大海应助明亮无颜采纳,获得10
38秒前
烟花应助水三寿采纳,获得10
38秒前
tuomasi2发布了新的文献求助10
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416783
求助须知:如何正确求助?哪些是违规求助? 3018648
关于积分的说明 8884570
捐赠科研通 2705843
什么是DOI,文献DOI怎么找? 1483963
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681060