Rapeseed Variety Recognition Based on Hyperspectral Feature Fusion

油菜籽 高光谱成像 模式识别(心理学) 人工智能 稳健性(进化) 支持向量机 分类器(UML) 计算机科学 数学 农学 生物 生物化学 基因
作者
Fan Liu,Fang Wang,Xiaoqiao Wang,Guiping Liao,Zaiqi Zhang,Yuan Yang,Yangmiao Jiao
出处
期刊:Agronomy [MDPI AG]
卷期号:12 (10): 2350-2350 被引量:7
标识
DOI:10.3390/agronomy12102350
摘要

As an important oil crop, rapeseed contributes to the food security of the world. In recent years, agronomists have cultivated many new varieties, which has increased human nutritional needs. Variety recognition is of great importance for yield improvement and quality breeding. In view of the low efficiency and damage of traditional methods, in this paper, we develop a noninvasive model for the recognition of rapeseed varieties based on hyperspectral feature fusion. Three types of hyperspectral image features, namely, the multifractal feature, color characteristics, and trilateral parameters, are fused together to identify 11 rapeseed species. An optimal feature is selected using a simple rule, and then the three kinds of features are fused. The support vector machine kernel method is employed as a classifier. The average recognition rate reaches 96.35% and 93.71% for distinguishing two species and 11 species, respectively. The abundance test model demonstrates that our model possesses robustness. The high recognition rate is almost independent of the number of modeling samples and classifiers. This result can provide some practical experience and method guidance for the rapid recognition of rapeseed varieties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
其醉完成签到,获得积分10
1秒前
咸鸭蛋完成签到 ,获得积分10
1秒前
JIN发布了新的文献求助10
1秒前
无花果应助Evander采纳,获得10
1秒前
赘婿应助Sword采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
ziptip发布了新的文献求助10
2秒前
3秒前
Bowen完成签到,获得积分10
3秒前
4秒前
4秒前
慕青应助魄魄olm采纳,获得10
4秒前
木木发布了新的文献求助10
5秒前
科研通AI6应助天才玩家H采纳,获得20
5秒前
Uu发布了新的文献求助10
5秒前
科研通AI6应助未雨采纳,获得10
5秒前
今后应助wuyy采纳,获得10
7秒前
8秒前
8秒前
8秒前
于跃发布了新的文献求助10
9秒前
Xx完成签到 ,获得积分10
9秒前
歪比巴卜发布了新的文献求助20
9秒前
10秒前
WA完成签到,获得积分10
10秒前
10秒前
10秒前
念梦发布了新的文献求助10
10秒前
11秒前
隐形曼青应助一颗小花生采纳,获得10
12秒前
濯枝雨完成签到,获得积分10
12秒前
artoria完成签到,获得积分10
12秒前
科研通AI2S应助Z赵采纳,获得10
12秒前
12秒前
刘小姐完成签到,获得积分10
12秒前
酷波er应助danielsong采纳,获得10
12秒前
12秒前
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553