Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion

脑电图 计算机科学 特征选择 支持向量机 特征(语言学) 人工智能 冗余(工程) 特征提取 逻辑回归 主成分分析 非线性系统 频域 模式识别(心理学) 心理学 机器学习 计算机视觉 哲学 物理 精神科 操作系统 量子力学 语言学
作者
Yuhao Zhang,Hanying Guo,Yongjiang Zhou,Chengji Xu,Yang Liao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104237-104237 被引量:42
标识
DOI:10.1016/j.bspc.2022.104237
摘要

Detecting the mental state of a driver using electroencephalography (EEG) signals can reduce the probability of traffic accidents. However, EEG signals are unstable and nonlinear and fatigue detection based on one-dimensional features may provide insufficient information, resulting in low recognition efficiency. To resolve these challenges, this paper proposes an EEG-based multi-dimensional feature selection and fusion method to recognise mental fatigue in drivers. First, the EEG signals were decomposed into α, β and θ bands, and then the corresponding time domain, frequency domain and nonlinear features were generated respectively. Furthermore, a three-layer feature-selection method based on Logistic Regression, one-way Analysis of Variance and Recursive Feature Elimination (logistic-ARFE) was proposed to solve the feature redundancy. Logistic-ARFE is designed to automatically select the optimal subset of mental fatigue features. Principal component analysis was used to fuse the optimal feature subset from different dimensions to obtain the fusion feature at a cumulative contribution ratio of 90%, which was used as the final feature to express the recognition accuracy of eight conventional machine learning models. A publicly available EEG dataset for driver fatigue was used to validate the proposed method. The final results show that six of the eight models achieve high recognition accuracy, which indicates that the Logistic-ARFE feature selection algorithm has applicability widely. In particular, compared with other studies using the same dataset, the Gaussian SVM proposed in this study based on time–frequency-nonlinear fusion features achieves the highest recognition accuracy, which is improved by 6.32% and 6.11% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淞33发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助20
1秒前
bkagyin应助DDvicky采纳,获得10
3秒前
秘密发布了新的文献求助10
4秒前
科研通AI5应助gf采纳,获得10
4秒前
4秒前
6秒前
CodeCraft应助ANY采纳,获得10
7秒前
cloud发布了新的文献求助10
8秒前
华仔应助失眠的耳机采纳,获得10
8秒前
大胆班完成签到,获得积分10
8秒前
8秒前
霍霍发布了新的文献求助10
9秒前
馆长应助zj采纳,获得30
9秒前
善学以致用应助zj采纳,获得10
9秒前
曾无忧发布了新的文献求助10
9秒前
wrx_KGM完成签到,获得积分10
9秒前
大模型应助purist采纳,获得10
11秒前
Dr_Sean发布了新的文献求助10
11秒前
12秒前
12秒前
Bob完成签到,获得积分10
12秒前
英俊的铭应助天宁采纳,获得10
12秒前
wrx_KGM发布了新的文献求助10
12秒前
12秒前
12秒前
李健应助碧蓝恶天采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
浮游应助路在脚下采纳,获得10
15秒前
16秒前
16秒前
可爱的函函应助wrx_KGM采纳,获得10
16秒前
温婉的曼冬完成签到,获得积分10
17秒前
Hope发布了新的文献求助30
17秒前
四夕完成签到 ,获得积分10
18秒前
赘婿应助小肥羊采纳,获得10
18秒前
zzm完成签到,获得积分10
20秒前
orixero应助2240920060采纳,获得10
20秒前
一颗星发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242