Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion

脑电图 计算机科学 特征选择 支持向量机 特征(语言学) 人工智能 冗余(工程) 特征提取 逻辑回归 主成分分析 非线性系统 频域 模式识别(心理学) 心理学 机器学习 计算机视觉 哲学 物理 精神科 操作系统 量子力学 语言学
作者
Yuhao Zhang,Hanying Guo,Yongjiang Zhou,Chengji Xu,Yang Liao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104237-104237 被引量:26
标识
DOI:10.1016/j.bspc.2022.104237
摘要

Detecting the mental state of a driver using electroencephalography (EEG) signals can reduce the probability of traffic accidents. However, EEG signals are unstable and nonlinear and fatigue detection based on one-dimensional features may provide insufficient information, resulting in low recognition efficiency. To resolve these challenges, this paper proposes an EEG-based multi-dimensional feature selection and fusion method to recognise mental fatigue in drivers. First, the EEG signals were decomposed into α, β and θ bands, and then the corresponding time domain, frequency domain and nonlinear features were generated respectively. Furthermore, a three-layer feature-selection method based on Logistic Regression, one-way Analysis of Variance and Recursive Feature Elimination (logistic-ARFE) was proposed to solve the feature redundancy. Logistic-ARFE is designed to automatically select the optimal subset of mental fatigue features. Principal component analysis was used to fuse the optimal feature subset from different dimensions to obtain the fusion feature at a cumulative contribution ratio of 90%, which was used as the final feature to express the recognition accuracy of eight conventional machine learning models. A publicly available EEG dataset for driver fatigue was used to validate the proposed method. The final results show that six of the eight models achieve high recognition accuracy, which indicates that the Logistic-ARFE feature selection algorithm has applicability widely. In particular, compared with other studies using the same dataset, the Gaussian SVM proposed in this study based on time–frequency-nonlinear fusion features achieves the highest recognition accuracy, which is improved by 6.32% and 6.11% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生生完成签到 ,获得积分10
刚刚
刚刚
烂漫念文完成签到,获得积分10
2秒前
Roxanne发布了新的文献求助30
3秒前
YSRAHTN完成签到,获得积分10
4秒前
木穹完成签到,获得积分10
4秒前
luca发布了新的文献求助50
7秒前
8秒前
wanci应助doc.wei采纳,获得10
9秒前
Shi完成签到,获得积分10
10秒前
cmy完成签到,获得积分10
12秒前
19秒前
20秒前
Lucas应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
doc.wei发布了新的文献求助10
23秒前
向日葵应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
zhi完成签到,获得积分10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
李大姐发布了新的文献求助10
25秒前
冯冯冯完成签到 ,获得积分10
25秒前
T123456789完成签到,获得积分10
25秒前
羽宇完成签到,获得积分10
28秒前
万里完成签到,获得积分10
31秒前
小白完成签到,获得积分10
32秒前
双夏完成签到 ,获得积分10
32秒前
独特笙完成签到 ,获得积分10
32秒前
JERRI完成签到,获得积分10
34秒前
34秒前
科研通AI2S应助gdh采纳,获得10
34秒前
情怀应助qing采纳,获得10
36秒前
wangbq发布了新的文献求助10
36秒前
橙子皮完成签到,获得积分10
40秒前
44秒前
爱学习的悦悦子完成签到 ,获得积分10
45秒前
从南到北发布了新的文献求助50
47秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043