Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion

脑电图 计算机科学 特征选择 支持向量机 特征(语言学) 人工智能 冗余(工程) 特征提取 逻辑回归 主成分分析 非线性系统 频域 模式识别(心理学) 心理学 机器学习 计算机视觉 哲学 物理 精神科 操作系统 量子力学 语言学
作者
Yuhao Zhang,Hanying Guo,Yongjiang Zhou,Chengji Xu,Yang Liao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104237-104237 被引量:42
标识
DOI:10.1016/j.bspc.2022.104237
摘要

Detecting the mental state of a driver using electroencephalography (EEG) signals can reduce the probability of traffic accidents. However, EEG signals are unstable and nonlinear and fatigue detection based on one-dimensional features may provide insufficient information, resulting in low recognition efficiency. To resolve these challenges, this paper proposes an EEG-based multi-dimensional feature selection and fusion method to recognise mental fatigue in drivers. First, the EEG signals were decomposed into α, β and θ bands, and then the corresponding time domain, frequency domain and nonlinear features were generated respectively. Furthermore, a three-layer feature-selection method based on Logistic Regression, one-way Analysis of Variance and Recursive Feature Elimination (logistic-ARFE) was proposed to solve the feature redundancy. Logistic-ARFE is designed to automatically select the optimal subset of mental fatigue features. Principal component analysis was used to fuse the optimal feature subset from different dimensions to obtain the fusion feature at a cumulative contribution ratio of 90%, which was used as the final feature to express the recognition accuracy of eight conventional machine learning models. A publicly available EEG dataset for driver fatigue was used to validate the proposed method. The final results show that six of the eight models achieve high recognition accuracy, which indicates that the Logistic-ARFE feature selection algorithm has applicability widely. In particular, compared with other studies using the same dataset, the Gaussian SVM proposed in this study based on time–frequency-nonlinear fusion features achieves the highest recognition accuracy, which is improved by 6.32% and 6.11% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动忆霜发布了新的文献求助10
3秒前
3秒前
Orange应助栗子栗栗子采纳,获得10
4秒前
4秒前
拼搏靖巧完成签到,获得积分20
5秒前
6秒前
yzz发布了新的文献求助20
6秒前
ANGEK发布了新的文献求助10
6秒前
7秒前
8秒前
称心鸵鸟发布了新的文献求助10
8秒前
9秒前
jessiefuli发布了新的文献求助10
10秒前
lxz发布了新的文献求助10
10秒前
Kaz发布了新的文献求助10
10秒前
烟花应助布丁采纳,获得10
10秒前
善善关注了科研通微信公众号
10秒前
橘子海的夏天完成签到,获得积分10
13秒前
13秒前
13秒前
jessiefuli完成签到,获得积分20
14秒前
张鹏程完成签到,获得积分10
14秒前
15秒前
FKHY应助yzz采纳,获得20
15秒前
16秒前
鲨鱼辣椒完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
袁睿韬应助lumen采纳,获得10
20秒前
PYF完成签到,获得积分10
21秒前
21秒前
Vicki完成签到,获得积分10
22秒前
aixiaoming0503完成签到,获得积分10
22秒前
搜集达人应助lemon采纳,获得10
23秒前
23秒前
Owen应助半夏采纳,获得10
25秒前
鲨鱼辣椒发布了新的文献求助10
25秒前
迟到虞姬发布了新的文献求助10
25秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371