清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dense Haze Removal Based on Dynamic Collaborative Inference Learning for Remote Sensing Images

薄雾 计算机科学 光辉 遥感 推论 反演(地质) 稳健性(进化) 环境科学 人工智能 气象学 地质学 地理 生物化学 基因 构造盆地 古生物学 化学
作者
Libao Zhang,Shan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2022.3207832
摘要

Haze in remote sensing images (RSIs) usually causes serious radiance distortion and image quality degeneration, resulting in difficult remote sensing inversion and interpretation. Under the condition of dense haze, existing dehazing methods still experience problems to be solved: 1) the texture details and spectral characteristics in RSIs cannot be restored well; 2) small-scale objects, such as cars and ships, which often consist of only a few pixels in RSIs, cannot be effectively highlighted in dehazed results. To solve these issues, we propose a novel dynamic collaborative inference learning (DCIL) framework that can significantly restore real surface information from dense hazy RSIs. First, we design a dynamic mutual enhancement (DME) mechanism to reinforce the low-level texture features by integrating primary information and semantic information at different levels. Second, we propose a spectrum-aware aggregation (SAA) strategy to mine the spectrum features among multiscale restored results, which can fully capture spectral characteristics. Third, we build a collaborative criterion by constructing a Siamese network structure in the training stage to improve the robustness and generalization performance of DCIL considering the diversity of the scale range and view change of RSIs. Finally, we propose a phased learning strategy to deduce the implicit haze-relevant features by gradually increasing the concentration of haze which can effectively address small-scale objects obscured by dense haze. To this end, we develop two synthetic remote sensing dehazing datasets to train our model, which can also alleviate the dilemma of hazy RSI datasets shortages. Experimental results on both synthetic datasets and real remote sensing hazy images demonstrate that the proposed DCIL can attain significant progress compared to competing methods. The two synthetic hazy datasets are available at https://github.com/Shan-rs/DCI-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研小白完成签到 ,获得积分10
4秒前
心想事成完成签到 ,获得积分10
9秒前
大仁哥完成签到,获得积分10
11秒前
yindi1991完成签到 ,获得积分10
14秒前
xianyaoz完成签到 ,获得积分0
19秒前
t铁核桃1985完成签到 ,获得积分10
25秒前
zhilianghui0807完成签到 ,获得积分10
27秒前
CaoJing完成签到 ,获得积分10
29秒前
Qing完成签到 ,获得积分10
33秒前
su完成签到 ,获得积分10
39秒前
666完成签到 ,获得积分10
45秒前
48秒前
kenchilie完成签到 ,获得积分10
50秒前
小可爱完成签到 ,获得积分10
52秒前
towind发布了新的文献求助10
52秒前
dreamwalk完成签到 ,获得积分10
53秒前
54秒前
capricorn完成签到,获得积分10
55秒前
朴实乐天完成签到,获得积分10
56秒前
黄振全发布了新的文献求助30
1分钟前
葶ting完成签到 ,获得积分10
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
黄振全完成签到,获得积分10
1分钟前
杨琴完成签到 ,获得积分10
1分钟前
Hina完成签到,获得积分0
1分钟前
科目三应助swat采纳,获得10
1分钟前
Archy完成签到,获得积分10
1分钟前
AURORA丶完成签到 ,获得积分10
1分钟前
1分钟前
swat发布了新的文献求助10
1分钟前
可靠的书桃完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
昕昕完成签到,获得积分10
1分钟前
swat完成签到,获得积分10
1分钟前
firewood完成签到,获得积分10
1分钟前
充电宝应助9752249采纳,获得10
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
昕昕发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758260
求助须知:如何正确求助?哪些是违规求助? 3301123
关于积分的说明 10116489
捐赠科研通 3015568
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766