Deep‐Learning‐Assisted Noncontact Gesture‐Recognition System for Touchless Human‐Machine Interfaces

手势 手势识别 机器人 深度学习 人机交互 人工智能 计算机视觉 计算机科学
作者
Hao Zhou,Wei Huang,Zhuo Xiao,Shichuan Zhang,Wangzhan Li,Jinhui Hu,Tianxing Feng,Jing Wu,Pengcheng Zhu,Yanchao Mao
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (49) 被引量:109
标识
DOI:10.1002/adfm.202208271
摘要

Abstract Human‐machine interfaces (HMIs) play important role in the communication between humans and robots. Touchless HMIs with high hand dexterity and hygiene hold great promise in medical applications, especially during the pandemic of coronavirus disease 2019 (COVID‐19) to reduce the spread of virus. However, current touchless HMIs are mainly restricted by limited types of gesture recognition, the requirement of wearing accessories, complex sensing platforms, light conditions, and low recognition accuracy, obstructing their practical applications. Here, an intelligent noncontact gesture‐recognition system is presented through the integration of a triboelectric touchless sensor (TTS) and deep learning technology. Combined with a deep‐learning‐based multilayer perceptron neural network, the TTS can recognize 16 different types of gestures with a high average accuracy of 96.5%. The intelligent noncontact gesture‐recognition system is further applied to control a robot for collecting throat swabs in a noncontact mode. Compared with present touchless HMIs, the proposed system can recognize diverse complex gestures by utilizing charges naturally carried on human fingers without the need of wearing accessories, complicated device structures, adequate light conditions, and achieves high recognition accuracy. This system could provide exciting opportunities to develop a new generation of touchless medical equipment, as well as touchless public facilities, smart robots, virtual reality, metaverse, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助ying采纳,获得30
1秒前
renshiq发布了新的文献求助10
1秒前
枫叶应助潇洒的奇迹采纳,获得10
2秒前
3秒前
3秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
SciGPT应助hsyyk采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
生动惜灵应助科研通管家采纳,获得10
6秒前
cherish完成签到,获得积分10
6秒前
BBBB小拳头完成签到,获得积分10
6秒前
zhangzhang发布了新的文献求助10
7秒前
小李同学发布了新的文献求助10
8秒前
dianpao完成签到,获得积分20
8秒前
积极代芙完成签到,获得积分10
8秒前
9秒前
9秒前
大约在冬季完成签到,获得积分10
10秒前
慕青应助落寞鱼采纳,获得10
11秒前
11秒前
Selenge发布了新的文献求助10
11秒前
你能行完成签到,获得积分10
12秒前
模糊中正完成签到,获得积分0
12秒前
小马甲应助hsyyk采纳,获得10
12秒前
13秒前
傅双庆应助积极代芙采纳,获得10
13秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444043
求助须知:如何正确求助?哪些是违规求助? 3040031
关于积分的说明 8979942
捐赠科研通 2728708
什么是DOI,文献DOI怎么找? 1496621
科研通“疑难数据库(出版商)”最低求助积分说明 691791
邀请新用户注册赠送积分活动 689375