Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking

卷积神经网络 数字水印 稳健性(进化) 计算机科学 人工智能 水印 深度学习 特征提取 嵌入 自编码 模式识别(心理学) 隐身 隐写术 图像(数学) 生物化学 化学 基因
作者
Debolina Mahapatra,Preetam Amrit,Om Prakash Singh,Amit Kumar Singh,Anubhav Agrawal
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (02) 被引量:6
标识
DOI:10.1117/1.jei.32.2.021604
摘要

Watermarking consists of embedding in, and later extracting from, a digital cover a design called a watermark to prove the image’s copyright/ownership. In watermarking, the use of deep-learning approaches is extremely beneficial due to their strong learning ability with accurate and superior results. By taking advantage of deep-learning, we designed an autoencoder convolutional neural network (CNN)-based watermarking algorithm to maximize the robustness while ensuring the invisibility of the watermark. A two network model, including embedding and extraction, is introduced to comprehensively analyze the performance of the algorithm. The embedding network architecture is composed of convolutional autoencoders. Initially, CNN is considered to obtain the feature maps from the cover and mark images. Subsequently, the feature maps of the mark and cover are concatenated with the help of the concatenation principle. In the extraction model, block-level transposed convolution and the rectified linear unit algorithm is applied on the extracted features of watermarked and cover images to obtain the hidden mark. Extensive experiments demonstrate that the proposed algorithm has high invisibility and good robustness against several attacks at a low cost. Further, our proposed scheme outperforms other state-of-the-art schemes in terms of robustness with good invisibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助jimmy采纳,获得10
2秒前
3秒前
bxj完成签到 ,获得积分10
4秒前
不配.应助谦让的小姜采纳,获得10
6秒前
将将发布了新的文献求助10
6秒前
干净昊强发布了新的文献求助10
7秒前
jlwang发布了新的文献求助10
10秒前
天真书竹完成签到,获得积分20
11秒前
科研通AI2S应助天真的文轩采纳,获得10
12秒前
XL应助专注的语堂采纳,获得10
13秒前
系统提示完成签到,获得积分10
13秒前
天真书竹发布了新的文献求助10
14秒前
邓宇星完成签到,获得积分10
15秒前
wang1882完成签到,获得积分10
15秒前
Egoist完成签到,获得积分10
15秒前
viahit完成签到 ,获得积分10
17秒前
20秒前
20秒前
柴柴完成签到,获得积分10
21秒前
小盼虫完成签到,获得积分10
21秒前
赘婿应助橙浅采纳,获得10
24秒前
24秒前
田様应助甜蜜匕采纳,获得10
24秒前
25秒前
Lucas应助袁大头采纳,获得10
25秒前
Step发布了新的文献求助30
25秒前
搜集达人应助谦让的小姜采纳,获得10
27秒前
LY020201完成签到,获得积分10
29秒前
不配.应助ureil采纳,获得10
30秒前
所所应助小盼虫采纳,获得10
30秒前
jcduoduo完成签到,获得积分10
30秒前
32秒前
33秒前
34秒前
35秒前
Harlotte发布了新的文献求助10
36秒前
36秒前
shusz完成签到,获得积分10
36秒前
猫丫发布了新的文献求助10
38秒前
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046