Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking

卷积神经网络 数字水印 稳健性(进化) 计算机科学 人工智能 水印 深度学习 特征提取 嵌入 自编码 模式识别(心理学) 隐身 隐写术 图像(数学) 生物化学 化学 基因
作者
Debolina Mahapatra,Preetam Amrit,Om Prakash Singh,Amit Kumar Singh,Anubhav Agrawal
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (02) 被引量:6
标识
DOI:10.1117/1.jei.32.2.021604
摘要

Watermarking consists of embedding in, and later extracting from, a digital cover a design called a watermark to prove the image’s copyright/ownership. In watermarking, the use of deep-learning approaches is extremely beneficial due to their strong learning ability with accurate and superior results. By taking advantage of deep-learning, we designed an autoencoder convolutional neural network (CNN)-based watermarking algorithm to maximize the robustness while ensuring the invisibility of the watermark. A two network model, including embedding and extraction, is introduced to comprehensively analyze the performance of the algorithm. The embedding network architecture is composed of convolutional autoencoders. Initially, CNN is considered to obtain the feature maps from the cover and mark images. Subsequently, the feature maps of the mark and cover are concatenated with the help of the concatenation principle. In the extraction model, block-level transposed convolution and the rectified linear unit algorithm is applied on the extracted features of watermarked and cover images to obtain the hidden mark. Extensive experiments demonstrate that the proposed algorithm has high invisibility and good robustness against several attacks at a low cost. Further, our proposed scheme outperforms other state-of-the-art schemes in terms of robustness with good invisibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JUST完成签到,获得积分10
1秒前
CodeCraft应助tyx采纳,获得10
1秒前
英俊的铭应助热心小松鼠采纳,获得10
1秒前
NexusExplorer应助热心小松鼠采纳,获得10
1秒前
搜集达人应助热心小松鼠采纳,获得10
1秒前
传奇3应助热心小松鼠采纳,获得10
1秒前
1秒前
1秒前
打打应助热心小松鼠采纳,获得10
1秒前
香蕉觅云应助热心小松鼠采纳,获得10
1秒前
我是老大应助EvaHo采纳,获得10
1秒前
情怀应助热心小松鼠采纳,获得10
1秒前
李爱国应助热心小松鼠采纳,获得10
1秒前
1秒前
赵成龙发布了新的文献求助10
2秒前
xiongyh10完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助JUST采纳,获得10
4秒前
JamesPei应助韩凡采纳,获得10
6秒前
7秒前
豆豆发布了新的文献求助10
7秒前
Marilyn发布了新的文献求助10
8秒前
完美世界应助香蕉妙菱采纳,获得10
9秒前
sum完成签到 ,获得积分20
10秒前
空空发布了新的文献求助10
10秒前
善良断缘完成签到 ,获得积分10
10秒前
11秒前
lalala发布了新的文献求助10
12秒前
小草完成签到,获得积分10
13秒前
13秒前
韩凡完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
李滢童发布了新的文献求助10
16秒前
动听的雅绿完成签到,获得积分10
18秒前
18秒前
fuje发布了新的文献求助10
19秒前
科研通AI5应助空空采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429