亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking

卷积神经网络 数字水印 稳健性(进化) 计算机科学 人工智能 水印 深度学习 特征提取 嵌入 自编码 模式识别(心理学) 隐身 隐写术 图像(数学) 生物化学 化学 基因
作者
Debolina Mahapatra,Preetam Amrit,Om Prakash Singh,Amit Kumar Singh,Anubhav Agrawal
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (02) 被引量:6
标识
DOI:10.1117/1.jei.32.2.021604
摘要

Watermarking consists of embedding in, and later extracting from, a digital cover a design called a watermark to prove the image’s copyright/ownership. In watermarking, the use of deep-learning approaches is extremely beneficial due to their strong learning ability with accurate and superior results. By taking advantage of deep-learning, we designed an autoencoder convolutional neural network (CNN)-based watermarking algorithm to maximize the robustness while ensuring the invisibility of the watermark. A two network model, including embedding and extraction, is introduced to comprehensively analyze the performance of the algorithm. The embedding network architecture is composed of convolutional autoencoders. Initially, CNN is considered to obtain the feature maps from the cover and mark images. Subsequently, the feature maps of the mark and cover are concatenated with the help of the concatenation principle. In the extraction model, block-level transposed convolution and the rectified linear unit algorithm is applied on the extracted features of watermarked and cover images to obtain the hidden mark. Extensive experiments demonstrate that the proposed algorithm has high invisibility and good robustness against several attacks at a low cost. Further, our proposed scheme outperforms other state-of-the-art schemes in terms of robustness with good invisibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHANG完成签到 ,获得积分10
17秒前
tenta完成签到,获得积分10
18秒前
51秒前
53秒前
1分钟前
千里草完成签到,获得积分10
1分钟前
彭日晓发布了新的文献求助10
1分钟前
significant发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
忍忍发布了新的文献求助30
2分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
忍忍完成签到 ,获得积分10
2分钟前
彭日晓完成签到,获得积分10
3分钟前
4分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
4分钟前
sho完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
Ysn完成签到,获得积分10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
Lny发布了新的文献求助20
7分钟前
7分钟前
slayers完成签到 ,获得积分10
8分钟前
8分钟前
story发布了新的文献求助30
8分钟前
8分钟前
Owen应助光亮雁玉采纳,获得10
8分钟前
SL完成签到,获得积分10
9分钟前
乐乐应助story采纳,获得10
9分钟前
科研通AI5应助光亮雁玉采纳,获得10
9分钟前
9分钟前
爆米花应助光亮雁玉采纳,获得10
9分钟前
Lny发布了新的文献求助20
9分钟前
冰西瓜完成签到 ,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955