异质结
材料科学
兴奋剂
光电子学
光电导性
化学气相沉积
光电探测器
合金
纳米技术
冶金
作者
Xiaona Sun,Yang Liu,Jianwei Shi,Si Chen,Jiantao Du,Xinfeng Liu,Chengbao Jiang,Shengxue Yang
标识
DOI:10.1002/adma.202304171
摘要
Abstract Constructing heterostructures and doping are valid ways to improve the optoelectronic properties of transition metal dichalcogenides (TMDs) and optimize the performance of TMDs‐based photodetectors. Compared with transfer techniques, chemical vapor deposition (CVD) has higher efficiency in preparing heterostructures. As for the one‐step CVD growth of heterostructures, cross‐contamination between the two materials may occur during the growth process, which may provide the possibility of one‐step simultaneous realization of controllable doping and formation of alloy‐based heterostructures by finely tuning the growth dynamics. Here, 2H‐1T′ Mo x Re (1‐ x ) S 2 alloy‐to‐alloy lateral heterostructures are synthesized through this one‐step CVD growth method, utilizing the cross‐contamination and different growth temperatures of the two alloys. Due to the doping of a small amount of Re atoms in 2H MoS 2 , 2H Mo x Re (1‐ x ) S 2 has a high response rejection ratio in the solar‐blind ultraviolet (SBUV) region and exhibits a positive photoconductive (PPC) effect. While the 1T′ Mo x Re (1‐ x ) S 2 formed by heavily doping Mo atoms into 1T' ReS 2 will produce a negative photoconductivity (NPC) effect under UV laser irradiation. The optoelectronic property of 2H‐1T′ Mo x Re (1‐ x ) S 2 ‐based heterostructures can be modulated by gate voltage. These findings are expected to expand the functionality of traditional optoelectronic devices and have potential applications in optoelectronic logic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI