Abstract 6486: Single nucleotide polymorphisms that predict serum cholesterol as a prostate cancer prognostic factor - a Mendelian randomization study

孟德尔随机化 前列腺癌 医学 单核苷酸多态性 内科学 肿瘤科 癌症 饮食与癌症 混淆 队列 基因型 生物 遗传学 遗传变异 基因
作者
Sebastian Boele,Aino Siltari,Paavo Raittinen,Johanna Schleutker,Kimmo Taari,Kirsi Talala,Teuvo L.J. Tammela,Anssi Auvinen,Teemu J. Murtola
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 6486-6486
标识
DOI:10.1158/1538-7445.am2023-6486
摘要

Abstract Introduction: Intracellular cholesterol metabolism plays an important role in prostate cancer progression and emergence of treatment resistance. However, it remains unclear whether serum cholesterol and lipoproteins are associated with prostate cancer outcomes. Studies on serum cholesterol and cancer are often confounded by lifestyle factors such as diet and obesity. A possible solution is to use instrumental variables, such as SNPs predicting serum cholesterol. According to the Mendelian randomization theory, germline SNP distribution is unaffected by confounding variables such as diet and lifestyle factors. Objective: To estimate whether SNPs that predict serum cholesterol and lipoproteins also predict mortality among a cohort of men with prostate cancer. Methods: Our study cohort consisted of 3,241 men diagnosed with prostate cancer between 1996-2015, using data collected by the Finnish Randomized Study of Screening for Prostate Cancer. Blood samples were genotyped by PRACTICAL consortium. A UCSC genome browser was utilized for selecting 85 SNPs in lipid metabolism-associated genes. Dates and causes of deaths between 1996-2015 were obtained from the Statistics Finland's statistics on causes of death. Information on serum cholesterol and lipoprotein measurements were obtained from a regional laboratory database.Scores predicting serum cholesterol, LDL, HDL and triglyceride level by SNP genotype were created using linear regression and lasso regression. Risk of prostate cancer death and overall mortality by level of the SNP risk score were evaluated with multivariable-adjusted Cox regression. Follow-up started at prostate cancer diagnosis and continued until death, emigration or common closing date of Dec 31, 2015.Results: SNP score predicting total cholesterol stratified prostate cancer patients both for disease-specific (HR 1.27, 95% CI 0.49-3.28 for highest tertile vs. lowest) and overall survival (HR 1.43, 95% CI 0.94-2.20, p for trend = 0.077), albeit statistical significance was not reached. Similar survival differences were observed for SNP score predicting triglyceride level, but not for scores predicting LDL or HDL.Conclusions: SNPs predicting serum cholesterol and triglycerides are likely prognostic factors for survival of prostate cancer patients. This suggest serum cholesterol and lipoproteins areimportant in prostate cancer progression. Total cholesterol SNP scoreProstate-cancer specific survival Overall survival Citation Format: Sebastian Boele, Aino Siltari, Paavo Raittinen, Johanna Schleutker, Kimmo Taari, Kirsi Talala, Teuvo Tammela, Anssi Auvinen, Teemu J. Murtola. Single nucleotide polymorphisms that predict serum cholesterol as a prostate cancer prognostic factor - a Mendelian randomization study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6486.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的颜演完成签到 ,获得积分10
刚刚
yudandan@CJLU发布了新的文献求助10
1秒前
科研小民工应助_呱_采纳,获得50
1秒前
愉快盼曼完成签到,获得积分20
1秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
13679165979发布了新的文献求助10
3秒前
温暖的钻石完成签到,获得积分10
3秒前
科研通AI5应助赖道之采纳,获得10
3秒前
4秒前
苏卿应助Eric采纳,获得10
4秒前
思源应助hhzz采纳,获得10
5秒前
红红完成签到,获得积分10
8秒前
瑶一瑶发布了新的文献求助10
8秒前
NexusExplorer应助刘鹏宇采纳,获得10
8秒前
roselau完成签到,获得积分10
8秒前
yudandan@CJLU完成签到,获得积分10
9秒前
9秒前
半山完成签到,获得积分10
13秒前
吹泡泡的红豆完成签到 ,获得积分10
14秒前
研友_89eBO8完成签到 ,获得积分10
14秒前
隐形曼青应助ZeJ采纳,获得10
14秒前
14秒前
隐形曼青应助温暖的钻石采纳,获得10
15秒前
Khr1stINK发布了新的文献求助10
16秒前
123cxj发布了新的文献求助10
17秒前
星辰大海应助红红采纳,获得10
17秒前
sweetbearm应助小周采纳,获得10
18秒前
科研通AI5应助赖道之采纳,获得10
18秒前
19秒前
HonamC完成签到,获得积分10
20秒前
十三十四十五完成签到,获得积分10
21秒前
潇洒的问夏完成签到 ,获得积分10
23秒前
无声瀑布完成签到,获得积分10
23秒前
Bingtao_Lian完成签到 ,获得积分10
24秒前
小布丁完成签到 ,获得积分10
24秒前
竹筏过海应助季生采纳,获得30
25秒前
26秒前
buno应助22采纳,获得10
27秒前
赘婿应助TT采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808