已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MCFF-MTDDI: multi-channel feature fusion for multi-typed drug–drug interaction prediction

计算机科学 冗余(工程) 特征(语言学) 人工智能 编码器 药品 机器学习 特征学习 特征向量 模式识别(心理学) 数据挖掘 医学 语言学 操作系统 精神科 哲学
作者
Chendi Han,Chun-Chun Wang,Li Huang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:13
标识
DOI:10.1093/bib/bbad215
摘要

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YipHosum发布了新的文献求助30
1秒前
兴奋的平松完成签到,获得积分10
2秒前
2秒前
world完成签到,获得积分10
3秒前
Akim应助ttt采纳,获得10
6秒前
甜甜完成签到 ,获得积分10
7秒前
钦点小黑发布了新的文献求助10
7秒前
YipHosum完成签到,获得积分10
7秒前
dean完成签到,获得积分10
7秒前
FashionBoy应助小铭的男仆采纳,获得10
9秒前
9秒前
11秒前
然大宝发布了新的文献求助10
12秒前
13秒前
13秒前
TZMY完成签到,获得积分10
14秒前
CYL发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
Akim应助科研通管家采纳,获得30
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
阿布应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
美好斓应助科研通管家采纳,获得100
16秒前
烟花应助科研通管家采纳,获得10
16秒前
mm应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
喜悦凡霜发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
阿布应助科研通管家采纳,获得10
17秒前
ttt发布了新的文献求助10
17秒前
Kin发布了新的文献求助10
20秒前
shark发布了新的文献求助10
20秒前
24秒前
刻苦迎波关注了科研通微信公众号
25秒前
康康小白杨完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634034
求助须知:如何正确求助?哪些是违规求助? 4730010
关于积分的说明 14987480
捐赠科研通 4791817
什么是DOI,文献DOI怎么找? 2559061
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479734