已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MCFF-MTDDI: multi-channel feature fusion for multi-typed drug–drug interaction prediction

计算机科学 冗余(工程) 特征(语言学) 人工智能 编码器 药品 机器学习 特征学习 特征向量 模式识别(心理学) 数据挖掘 医学 语言学 操作系统 精神科 哲学
作者
Chendi Han,Chun-Chun Wang,Li Huang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:13
标识
DOI:10.1093/bib/bbad215
摘要

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助YBR采纳,获得10
刚刚
1秒前
1111发布了新的文献求助10
3秒前
风中故事完成签到,获得积分10
3秒前
lisongbo发布了新的文献求助10
3秒前
18275412695发布了新的文献求助10
7秒前
Sunshine应助kun采纳,获得10
8秒前
一岁一礼完成签到 ,获得积分10
9秒前
小醒笑哈哈完成签到,获得积分10
10秒前
13秒前
15秒前
15秒前
完美世界应助小醒笑哈哈采纳,获得10
17秒前
21秒前
Sunshine给王嗨皮的求助进行了留言
21秒前
YBR发布了新的文献求助10
21秒前
Yyyang发布了新的文献求助10
22秒前
零零柒发布了新的文献求助20
26秒前
婷123完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
等等完成签到,获得积分10
30秒前
王彦霖完成签到 ,获得积分10
31秒前
33秒前
等等发布了新的文献求助10
33秒前
丘比特应助chen采纳,获得10
34秒前
35秒前
35秒前
繁星长明应助科研通管家采纳,获得10
36秒前
yyds应助科研通管家采纳,获得10
36秒前
yyds应助科研通管家采纳,获得10
36秒前
yyds应助科研通管家采纳,获得80
36秒前
大个应助科研通管家采纳,获得10
36秒前
36秒前
充电宝应助科研通管家采纳,获得50
36秒前
yyds应助科研通管家采纳,获得80
36秒前
Momomo应助科研通管家采纳,获得20
36秒前
38秒前
万能图书馆应助复杂梦安采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731417
求助须知:如何正确求助?哪些是违规求助? 5330101
关于积分的说明 15320954
捐赠科研通 4877467
什么是DOI,文献DOI怎么找? 2620332
邀请新用户注册赠送积分活动 1569596
关于科研通互助平台的介绍 1526091