MCFF-MTDDI: multi-channel feature fusion for multi-typed drug–drug interaction prediction

计算机科学 冗余(工程) 特征(语言学) 人工智能 编码器 药品 机器学习 特征学习 特征向量 模式识别(心理学) 数据挖掘 医学 语言学 操作系统 精神科 哲学
作者
Chendi Han,Chun-Chun Wang,Li Huang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:13
标识
DOI:10.1093/bib/bbad215
摘要

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平常诗翠完成签到,获得积分10
1秒前
科研通AI2S应助liuliu采纳,获得10
2秒前
阳光起眸发布了新的文献求助10
2秒前
巴斯光年完成签到,获得积分20
2秒前
3秒前
xshuang完成签到,获得积分10
3秒前
loong发布了新的文献求助10
3秒前
淡淡瓜子完成签到 ,获得积分10
3秒前
任性又琴完成签到,获得积分20
3秒前
3秒前
佐哥完成签到,获得积分10
4秒前
小二郎应助笑点低的凡梦采纳,获得10
5秒前
枝杲完成签到,获得积分20
5秒前
Pan发布了新的文献求助10
7秒前
7秒前
zhao发布了新的文献求助10
7秒前
君君欧发布了新的文献求助10
7秒前
8秒前
彭于晏应助111采纳,获得10
8秒前
9秒前
9秒前
reflux应助宇文傲龙采纳,获得10
9秒前
9秒前
9秒前
霸气凡儿发布了新的文献求助10
10秒前
11秒前
11秒前
周胎胎完成签到,获得积分20
11秒前
爱卿5271完成签到,获得积分0
11秒前
调研昵称发布了新的文献求助10
13秒前
xiatian完成签到,获得积分10
13秒前
几号大家好完成签到,获得积分20
13秒前
zhao完成签到,获得积分10
13秒前
14秒前
Ihang完成签到 ,获得积分10
14秒前
14秒前
14秒前
skin完成签到,获得积分10
15秒前
爆米花应助阳光起眸采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134472
求助须知:如何正确求助?哪些是违规求助? 2785402
关于积分的说明 7772258
捐赠科研通 2441051
什么是DOI,文献DOI怎么找? 1297713
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813