MCFF-MTDDI: multi-channel feature fusion for multi-typed drug–drug interaction prediction

计算机科学 冗余(工程) 特征(语言学) 人工智能 编码器 药品 机器学习 特征学习 特征向量 模式识别(心理学) 数据挖掘 医学 语言学 操作系统 精神科 哲学
作者
Chendi Han,Chun-Chun Wang,Li Huang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:13
标识
DOI:10.1093/bib/bbad215
摘要

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
Mrchen完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
星辰大海应助哦1采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
SHAO应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
乔垣结衣应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助胖头鱼采纳,获得30
2秒前
科研狗完成签到,获得积分10
3秒前
3秒前
jj完成签到 ,获得积分10
4秒前
5秒前
百日萌新Empty完成签到,获得积分20
5秒前
7秒前
7秒前
大胆绮完成签到 ,获得积分10
7秒前
ding应助典雅的俊驰采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545