MCFF-MTDDI: multi-channel feature fusion for multi-typed drug–drug interaction prediction

计算机科学 冗余(工程) 特征(语言学) 人工智能 编码器 药品 机器学习 特征学习 特征向量 模式识别(心理学) 数据挖掘 医学 语言学 操作系统 精神科 哲学
作者
Chendi Han,Chun-Chun Wang,Li Huang,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:13
标识
DOI:10.1093/bib/bbad215
摘要

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
小航完成签到,获得积分10
2秒前
研友_85YNe8发布了新的文献求助10
4秒前
4秒前
百十余完成签到,获得积分10
4秒前
科研通AI6应助善良的梦槐采纳,获得10
4秒前
5秒前
agui完成签到 ,获得积分10
6秒前
6秒前
7秒前
NexusExplorer应助欢乐轮回采纳,获得10
7秒前
研友_alan发布了新的文献求助10
8秒前
大模型应助蓝丝绒采纳,获得10
9秒前
小王发布了新的文献求助10
9秒前
pj发布了新的文献求助10
9秒前
陈进参完成签到,获得积分10
10秒前
杨春森发布了新的文献求助30
11秒前
ls完成签到,获得积分10
11秒前
12秒前
12秒前
JOKER完成签到,获得积分10
12秒前
2rrd发布了新的文献求助30
13秒前
邓台佳完成签到,获得积分10
13秒前
14秒前
lion完成签到,获得积分10
15秒前
HAL9000发布了新的文献求助30
15秒前
研友_85YNe8完成签到,获得积分10
17秒前
WGOIST发布了新的文献求助10
17秒前
Jasper应助黄嘉仪采纳,获得10
17秒前
17秒前
18秒前
小羊完成签到 ,获得积分10
18秒前
19秒前
20秒前
蓝丝绒发布了新的文献求助10
20秒前
不知道完成签到,获得积分0
21秒前
jiezhao完成签到,获得积分10
21秒前
mimi完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259010
求助须知:如何正确求助?哪些是违规求助? 4420845
关于积分的说明 13761269
捐赠科研通 4294626
什么是DOI,文献DOI怎么找? 2356495
邀请新用户注册赠送积分活动 1352874
关于科研通互助平台的介绍 1313784