Automatic Evaluating of Multi-Phase Cranial CTA Collateral Circulation Based on Feature Fusion Attention Network Model

人工智能 计算机科学 侧支循环 特征提取 冲程(发动机) 特征(语言学) 深度学习 融合机制 模式识别(心理学) 机器学习 医学 放射科 工程类 机械工程 语言学 哲学 病毒 病毒学 脂质双层融合
作者
Duo Tan,Jiayang Liu,Shanxiong Chen,Rui Yao,Yongmei Li,Shiyu Zhu,Linfeng Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 789-799 被引量:3
标识
DOI:10.1109/tnb.2023.3283049
摘要

Stroke is one of the main causes of disability and death, and it can be divided into hemorrhagic stroke and ischemic stroke. Ischemic stroke is more common, and about 8 out of 10 stroke patients suffer from ischemic stroke. In clinical practice, doctors diagnose stroke by using computed tomography angiography (CTA) image to accurately evaluate the collateral circulation in stroke patients. This imaging information is of great significance in assisting doctors to determine the patient's treatment plan and prognosis. Currently, great progress has been made in the field of computer-aided diagnosis technology in medicine by using artificial intelligence. However, in related research based on deep learning algorithms, researchers usually only use single-phase data for training, lacking the temporal dimension information of multi-phase image data. This makes it difficult for the model to learn more comprehensive and effective collateral circulation feature representation, thereby limiting its performance. Therefore, combining data for training is expected to improve the accuracy and reliability of collateral circulation evaluation. In this study, we propose an effective hybrid mechanism to assist the feature encoding network in evaluating the degree of collateral circulation in the brain. By using a hybrid attention mechanism, additional guidance and regularization are provided to enhance the collateral circulation feature representation across multiple stages. Time dimension information is added to the input, and multiple feature-level fusion modules are designed in the multi-branch network. The first fusion module in the single-stage feature extraction network completes the fusion of deep and shallow vessel features in the single-branch network, followed by the multi-stage network feature fusion module, which achieves feature fusion for four stages. Tested on a dataset of multi-phase cranial CTA images, the accuracy rate exceeding 90.43%. The experimental results demonstrate that the addition of these modules can fully explore collateral vessel features, improve feature expression capabilities, and optimize the performance of deep learning network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然妙松完成签到,获得积分10
刚刚
1秒前
清爽含灵发布了新的文献求助10
1秒前
一亩蔬菜发布了新的文献求助10
1秒前
永远永远完成签到,获得积分10
3秒前
以一关注了科研通微信公众号
4秒前
王老吉发布了新的文献求助10
5秒前
5秒前
万能图书馆应助不动脑筋采纳,获得10
6秒前
7秒前
淡然妙松发布了新的文献求助10
9秒前
文武完成签到,获得积分10
9秒前
9秒前
彭于晏应助XUXU采纳,获得10
10秒前
11秒前
YO发布了新的文献求助10
11秒前
12秒前
lyn完成签到,获得积分10
13秒前
13秒前
supershiyi11发布了新的文献求助10
15秒前
16秒前
小尾巴发布了新的文献求助10
17秒前
17秒前
19秒前
潇洒的宛菡完成签到,获得积分10
19秒前
领导范儿应助英俊绝义采纳,获得10
19秒前
20秒前
wer完成签到 ,获得积分10
20秒前
20秒前
20秒前
Hbobo发布了新的文献求助10
21秒前
EvilS完成签到,获得积分10
21秒前
鸣笛应助一一采纳,获得30
21秒前
本尼脸上褶子完成签到 ,获得积分10
22秒前
上官若男应助顺顺顺采纳,获得10
22秒前
上官若男应助wbing采纳,获得10
22秒前
22秒前
23秒前
没耳朵的小仙女完成签到 ,获得积分10
24秒前
阿晨发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545