清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic Evaluating of Multi-Phase Cranial CTA Collateral Circulation Based on Feature Fusion Attention Network Model

人工智能 计算机科学 侧支循环 特征提取 冲程(发动机) 特征(语言学) 深度学习 融合机制 模式识别(心理学) 机器学习 医学 放射科 工程类 病毒学 哲学 病毒 脂质双层融合 机械工程 语言学
作者
Duo Tan,Jiayang Liu,Shanxiong Chen,Rui Yao,Yongmei Li,Shiyu Zhu,Linfeng Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 789-799 被引量:3
标识
DOI:10.1109/tnb.2023.3283049
摘要

Stroke is one of the main causes of disability and death, and it can be divided into hemorrhagic stroke and ischemic stroke. Ischemic stroke is more common, and about 8 out of 10 stroke patients suffer from ischemic stroke. In clinical practice, doctors diagnose stroke by using computed tomography angiography (CTA) image to accurately evaluate the collateral circulation in stroke patients. This imaging information is of great significance in assisting doctors to determine the patient's treatment plan and prognosis. Currently, great progress has been made in the field of computer-aided diagnosis technology in medicine by using artificial intelligence. However, in related research based on deep learning algorithms, researchers usually only use single-phase data for training, lacking the temporal dimension information of multi-phase image data. This makes it difficult for the model to learn more comprehensive and effective collateral circulation feature representation, thereby limiting its performance. Therefore, combining data for training is expected to improve the accuracy and reliability of collateral circulation evaluation. In this study, we propose an effective hybrid mechanism to assist the feature encoding network in evaluating the degree of collateral circulation in the brain. By using a hybrid attention mechanism, additional guidance and regularization are provided to enhance the collateral circulation feature representation across multiple stages. Time dimension information is added to the input, and multiple feature-level fusion modules are designed in the multi-branch network. The first fusion module in the single-stage feature extraction network completes the fusion of deep and shallow vessel features in the single-branch network, followed by the multi-stage network feature fusion module, which achieves feature fusion for four stages. Tested on a dataset of multi-phase cranial CTA images, the accuracy rate exceeding 90.43%. The experimental results demonstrate that the addition of these modules can fully explore collateral vessel features, improve feature expression capabilities, and optimize the performance of deep learning network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ngqgY8发布了新的文献求助10
2秒前
年年有余完成签到,获得积分10
8秒前
xun完成签到,获得积分20
20秒前
ddd发布了新的文献求助10
32秒前
拼搏的帽子完成签到 ,获得积分10
51秒前
悄悄完成签到 ,获得积分10
55秒前
爱静静应助科研通管家采纳,获得30
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
xuan2022完成签到,获得积分10
1分钟前
淡定汉堡完成签到 ,获得积分10
1分钟前
爆米花应助RU0ONE采纳,获得10
1分钟前
qin202569完成签到,获得积分10
1分钟前
2分钟前
cloak发布了新的文献求助10
2分钟前
李健应助cloak采纳,获得10
2分钟前
科研通AI6应助ddd采纳,获得10
2分钟前
2分钟前
芹123发布了新的文献求助10
2分钟前
2分钟前
tian发布了新的文献求助10
2分钟前
oleskarabach发布了新的文献求助10
3分钟前
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分0
3分钟前
如歌完成签到,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
科研通AI2S应助Wzz采纳,获得10
3分钟前
斯文败类应助kklkimo采纳,获得10
4分钟前
ddd发布了新的文献求助10
4分钟前
4分钟前
传奇3应助ddd采纳,获得10
4分钟前
浮游应助阿冰采纳,获得10
4分钟前
4分钟前
浮游应助阿冰采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314415
求助须知:如何正确求助?哪些是违规求助? 4457505
关于积分的说明 13867920
捐赠科研通 4346733
什么是DOI,文献DOI怎么找? 2387293
邀请新用户注册赠送积分活动 1381439
关于科研通互助平台的介绍 1350432