Automatic Evaluating of Multi-Phase Cranial CTA Collateral Circulation Based on Feature Fusion Attention Network Model

人工智能 计算机科学 侧支循环 特征提取 冲程(发动机) 特征(语言学) 深度学习 融合机制 模式识别(心理学) 机器学习 医学 放射科 工程类 机械工程 语言学 哲学 病毒 病毒学 脂质双层融合
作者
Duo Tan,Jiayang Liu,Shanxiong Chen,Rui Yao,Yongmei Li,Shiyu Zhu,Linfeng Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 789-799 被引量:3
标识
DOI:10.1109/tnb.2023.3283049
摘要

Stroke is one of the main causes of disability and death, and it can be divided into hemorrhagic stroke and ischemic stroke. Ischemic stroke is more common, and about 8 out of 10 stroke patients suffer from ischemic stroke. In clinical practice, doctors diagnose stroke by using computed tomography angiography (CTA) image to accurately evaluate the collateral circulation in stroke patients. This imaging information is of great significance in assisting doctors to determine the patient's treatment plan and prognosis. Currently, great progress has been made in the field of computer-aided diagnosis technology in medicine by using artificial intelligence. However, in related research based on deep learning algorithms, researchers usually only use single-phase data for training, lacking the temporal dimension information of multi-phase image data. This makes it difficult for the model to learn more comprehensive and effective collateral circulation feature representation, thereby limiting its performance. Therefore, combining data for training is expected to improve the accuracy and reliability of collateral circulation evaluation. In this study, we propose an effective hybrid mechanism to assist the feature encoding network in evaluating the degree of collateral circulation in the brain. By using a hybrid attention mechanism, additional guidance and regularization are provided to enhance the collateral circulation feature representation across multiple stages. Time dimension information is added to the input, and multiple feature-level fusion modules are designed in the multi-branch network. The first fusion module in the single-stage feature extraction network completes the fusion of deep and shallow vessel features in the single-branch network, followed by the multi-stage network feature fusion module, which achieves feature fusion for four stages. Tested on a dataset of multi-phase cranial CTA images, the accuracy rate exceeding 90.43%. The experimental results demonstrate that the addition of these modules can fully explore collateral vessel features, improve feature expression capabilities, and optimize the performance of deep learning network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助文艺水蜜桃采纳,获得10
刚刚
刚刚
刚刚
科研通AI5应助BILNQPL采纳,获得10
1秒前
流白完成签到,获得积分10
1秒前
1秒前
Yolo完成签到,获得积分20
1秒前
YY应助胖豆采纳,获得10
2秒前
2秒前
jagger发布了新的文献求助10
2秒前
2秒前
3秒前
ChemistryZyh完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
充电宝应助朴素的士晋采纳,获得10
4秒前
4秒前
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
6秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
6秒前
6秒前
CodeCraft应助Mumu采纳,获得10
7秒前
飘逸数据线完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
Gauss完成签到,获得积分0
7秒前
丘奇完成签到,获得积分10
7秒前
木子发布了新的文献求助10
7秒前
标致的方盒完成签到,获得积分10
7秒前
8秒前
致橡树完成签到,获得积分20
8秒前
Yolo发布了新的文献求助10
8秒前
yyy完成签到,获得积分20
9秒前
9秒前
9秒前
yoon发布了新的文献求助10
9秒前
脑洞疼应助香蕉静芙采纳,获得10
9秒前
JTB完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762