Automatic Evaluating of Multi-Phase Cranial CTA Collateral Circulation Based on Feature Fusion Attention Network Model

人工智能 计算机科学 侧支循环 特征提取 冲程(发动机) 特征(语言学) 深度学习 融合机制 模式识别(心理学) 机器学习 医学 放射科 工程类 机械工程 语言学 哲学 病毒 病毒学 脂质双层融合
作者
Duo Tan,Jiayang Liu,Shanxiong Chen,Rui Yao,Yongmei Li,Shiyu Zhu,Linfeng Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 789-799 被引量:3
标识
DOI:10.1109/tnb.2023.3283049
摘要

Stroke is one of the main causes of disability and death, and it can be divided into hemorrhagic stroke and ischemic stroke. Ischemic stroke is more common, and about 8 out of 10 stroke patients suffer from ischemic stroke. In clinical practice, doctors diagnose stroke by using computed tomography angiography (CTA) image to accurately evaluate the collateral circulation in stroke patients. This imaging information is of great significance in assisting doctors to determine the patient's treatment plan and prognosis. Currently, great progress has been made in the field of computer-aided diagnosis technology in medicine by using artificial intelligence. However, in related research based on deep learning algorithms, researchers usually only use single-phase data for training, lacking the temporal dimension information of multi-phase image data. This makes it difficult for the model to learn more comprehensive and effective collateral circulation feature representation, thereby limiting its performance. Therefore, combining data for training is expected to improve the accuracy and reliability of collateral circulation evaluation. In this study, we propose an effective hybrid mechanism to assist the feature encoding network in evaluating the degree of collateral circulation in the brain. By using a hybrid attention mechanism, additional guidance and regularization are provided to enhance the collateral circulation feature representation across multiple stages. Time dimension information is added to the input, and multiple feature-level fusion modules are designed in the multi-branch network. The first fusion module in the single-stage feature extraction network completes the fusion of deep and shallow vessel features in the single-branch network, followed by the multi-stage network feature fusion module, which achieves feature fusion for four stages. Tested on a dataset of multi-phase cranial CTA images, the accuracy rate exceeding 90.43%. The experimental results demonstrate that the addition of these modules can fully explore collateral vessel features, improve feature expression capabilities, and optimize the performance of deep learning network model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大书关注了科研通微信公众号
2秒前
2秒前
4秒前
阿V完成签到,获得积分10
6秒前
清秀元霜发布了新的文献求助10
6秒前
完美世界应助liang采纳,获得20
7秒前
xshuang完成签到,获得积分10
7秒前
7秒前
幽默胜完成签到,获得积分10
8秒前
8秒前
wsgdhz发布了新的文献求助10
8秒前
研友_VZG7GZ应助Lavender采纳,获得10
9秒前
李燕杰发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
14秒前
清秀元霜完成签到,获得积分10
14秒前
15秒前
16秒前
大书发布了新的文献求助10
16秒前
17秒前
无情的碧玉完成签到,获得积分20
17秒前
Zoeee发布了新的文献求助10
17秒前
17秒前
Tira完成签到,获得积分10
18秒前
Hello应助李燕杰采纳,获得10
18秒前
甜叶菊发布了新的文献求助10
19秒前
马铃薯发布了新的文献求助10
19秒前
19秒前
21秒前
自然的亦巧完成签到,获得积分10
22秒前
zhuzhu发布了新的文献求助10
22秒前
22秒前
顺利的亦绿完成签到,获得积分10
22秒前
23秒前
Tira发布了新的文献求助10
23秒前
24秒前
Zoeee完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351960
求助须知:如何正确求助?哪些是违规求助? 2977282
关于积分的说明 8678669
捐赠科研通 2658284
什么是DOI,文献DOI怎么找? 1455643
科研通“疑难数据库(出版商)”最低求助积分说明 674014
邀请新用户注册赠送积分活动 664557