Automatic Evaluating of Multi-Phase Cranial CTA Collateral Circulation Based on Feature Fusion Attention Network Model

人工智能 计算机科学 侧支循环 特征提取 冲程(发动机) 特征(语言学) 深度学习 融合机制 模式识别(心理学) 机器学习 医学 放射科 工程类 机械工程 语言学 哲学 病毒 病毒学 脂质双层融合
作者
Duo Tan,Jiayang Liu,Shanxiong Chen,Rui Yao,Yongmei Li,Shiyu Zhu,Linfeng Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 789-799 被引量:5
标识
DOI:10.1109/tnb.2023.3283049
摘要

Stroke is one of the main causes of disability and death, and it can be divided into hemorrhagic stroke and ischemic stroke. Ischemic stroke is more common, and about 8 out of 10 stroke patients suffer from ischemic stroke. In clinical practice, doctors diagnose stroke by using computed tomography angiography (CTA) image to accurately evaluate the collateral circulation in stroke patients. This imaging information is of great significance in assisting doctors to determine the patient's treatment plan and prognosis. Currently, great progress has been made in the field of computer-aided diagnosis technology in medicine by using artificial intelligence. However, in related research based on deep learning algorithms, researchers usually only use single-phase data for training, lacking the temporal dimension information of multi-phase image data. This makes it difficult for the model to learn more comprehensive and effective collateral circulation feature representation, thereby limiting its performance. Therefore, combining data for training is expected to improve the accuracy and reliability of collateral circulation evaluation. In this study, we propose an effective hybrid mechanism to assist the feature encoding network in evaluating the degree of collateral circulation in the brain. By using a hybrid attention mechanism, additional guidance and regularization are provided to enhance the collateral circulation feature representation across multiple stages. Time dimension information is added to the input, and multiple feature-level fusion modules are designed in the multi-branch network. The first fusion module in the single-stage feature extraction network completes the fusion of deep and shallow vessel features in the single-branch network, followed by the multi-stage network feature fusion module, which achieves feature fusion for four stages. Tested on a dataset of multi-phase cranial CTA images, the accuracy rate exceeding 90.43%. The experimental results demonstrate that the addition of these modules can fully explore collateral vessel features, improve feature expression capabilities, and optimize the performance of deep learning network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助cangye采纳,获得10
刚刚
刚刚
发发发完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
丘比特应助史万仇采纳,获得10
2秒前
Zx_1993应助SUnnnnn采纳,获得20
2秒前
2秒前
斯文败类应助舒克采纳,获得10
3秒前
4秒前
Quincy完成签到,获得积分10
4秒前
慕青应助asdfqwer采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zlf发布了新的文献求助30
5秒前
爆米花应助123321采纳,获得10
6秒前
6秒前
欧巴江南style应助渠建武采纳,获得10
6秒前
Megalbox发布了新的文献求助10
6秒前
汉堡包应助HAHA采纳,获得10
7秒前
核桃发布了新的文献求助10
7秒前
Xuan发布了新的文献求助10
7秒前
冷傲的薯片完成签到 ,获得积分10
7秒前
丘奇发布了新的文献求助10
7秒前
8秒前
近在远方发布了新的文献求助50
8秒前
明明发布了新的文献求助10
8秒前
暴发户发布了新的文献求助10
8秒前
ming完成签到,获得积分10
8秒前
9秒前
淡定可乐完成签到,获得积分10
9秒前
Lucas应助安详晓亦采纳,获得10
9秒前
9秒前
ajimu发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597571
求助须知:如何正确求助?哪些是违规求助? 4683065
关于积分的说明 14828223
捐赠科研通 4661040
什么是DOI,文献DOI怎么找? 2536729
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470200