High-performance honeycombed FeF3@C cathodes enabling practical lithium pouch cells and silicon−metal fluoride batteries

材料科学 假电容 阴极 锂(药物) 电化学 化学工程 涂层 纳米技术 氟化锂 相(物质) 电极 无机化学 有机化学 电气工程 物理化学 内分泌学 化学 工程类 医学 超级电容器
作者
Yujie Wang,Peng Zhou,Mingyu Zhang,Zhenjiang He,Yi Cheng,You Zhou,Feixiang Wu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:60: 102847-102847 被引量:12
标识
DOI:10.1016/j.ensm.2023.102847
摘要

Metal fluoride cathodes are promising candidates for next-generation rechargeable lithium metal batteries (LMBs). However, the sluggish reaction kinetics limits their electrochemical applications, especially at high mass loadings. Moreover, current designs on fluoride cathodes hardly achieve the related practical pouch cells and full cells. A honeycombed FeF3@C nanocomposite with high specific surface area (SSA) of 191.6 m2 g−1, is successfully synthesized herein, where the nanosized FeF3 particles (less than 40 nm) are uniformly embedded in the honeycombed carbon matrix. Benefiting from the unique configuration, it can provide an efficient mixed Li+/e− conduction networks then enable excellent lithium storage performance under three-electron transfer reaction even at high mass loadings. The high-loading honeycombed FeF3@C (∼3.5 mg cm−2) cathode offers a reversible specific capacity of 369.9 mAh g−1 after 500 cycles in a Li half-cell, corresponding to noticeable areal capacity of ∼1.25 mAh cm−2. In order to further investigate their practical applications, as-produced FeF3@C−Li pouch cell is constructed, delivering average nominal capacity of ∼50 mAh per cycle. Furthermore, the FeF3−prelithiated Si (PLSi) full cell is produced for the first time, demonstrating cycle life over 200 cycles and rate capability up to 5C. Notably, the as-produced cathodes show partially reversible phase transition during discharge/charge, which offers abundant fresh phase interface, contributing to growing pseudocapacitance and Li+ migration ability as the cycle proceeds. The pseudocapacitance compensates for lost capacity caused by incompletely reversible phase transition, and enables superior electrochemical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助yy采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
FKKKKSY应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
爱笑难摧发布了新的文献求助10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
小文发布了新的文献求助10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
tuanheqi应助科研通管家采纳,获得150
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
ho应助科研通管家采纳,获得10
5秒前
wang发布了新的文献求助10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
田様应助神勇朝雪采纳,获得10
5秒前
lalala应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
wczhang1999发布了新的文献求助20
5秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Jasper应助NY采纳,获得10
6秒前
yier完成签到,获得积分20
6秒前
彭于晏应助漫若浮光采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056