材料科学
假电容
阴极
锂(药物)
电化学
化学工程
涂层
纳米技术
氟化锂
相(物质)
电极
无机化学
有机化学
电气工程
物理化学
内分泌学
化学
工程类
医学
超级电容器
作者
Yujie Wang,Peng Zhou,Mingyu Zhang,Zhenjiang He,Yi Cheng,You Zhou,Feixiang Wu
标识
DOI:10.1016/j.ensm.2023.102847
摘要
Metal fluoride cathodes are promising candidates for next-generation rechargeable lithium metal batteries (LMBs). However, the sluggish reaction kinetics limits their electrochemical applications, especially at high mass loadings. Moreover, current designs on fluoride cathodes hardly achieve the related practical pouch cells and full cells. A honeycombed FeF3@C nanocomposite with high specific surface area (SSA) of 191.6 m2 g−1, is successfully synthesized herein, where the nanosized FeF3 particles (less than 40 nm) are uniformly embedded in the honeycombed carbon matrix. Benefiting from the unique configuration, it can provide an efficient mixed Li+/e− conduction networks then enable excellent lithium storage performance under three-electron transfer reaction even at high mass loadings. The high-loading honeycombed FeF3@C (∼3.5 mg cm−2) cathode offers a reversible specific capacity of 369.9 mAh g−1 after 500 cycles in a Li half-cell, corresponding to noticeable areal capacity of ∼1.25 mAh cm−2. In order to further investigate their practical applications, as-produced FeF3@C−Li pouch cell is constructed, delivering average nominal capacity of ∼50 mAh per cycle. Furthermore, the FeF3−prelithiated Si (PLSi) full cell is produced for the first time, demonstrating cycle life over 200 cycles and rate capability up to 5C. Notably, the as-produced cathodes show partially reversible phase transition during discharge/charge, which offers abundant fresh phase interface, contributing to growing pseudocapacitance and Li+ migration ability as the cycle proceeds. The pseudocapacitance compensates for lost capacity caused by incompletely reversible phase transition, and enables superior electrochemical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI