Enhanced Self-Attention Network for Remote Sensing Building Change Detection

计算机科学 背景(考古学) 特征(语言学) 卷积(计算机科学) 编码器 图层(电子) 代表(政治) 特征提取 人工智能 联营 模式识别(心理学) 计算机视觉 人工神经网络 政治学 哲学 古生物学 操作系统 有机化学 化学 法学 政治 语言学 生物
作者
Shike Liang,Zhen Hua,Jinjiang Li
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4900-4915 被引量:7
标识
DOI:10.1109/jstars.2023.3278726
摘要

The self-attention mechanism can break the limitation of the receptive field, model in a global scope, and extract global information efficiently. In this work, we propose a lightweight remote sensing building change detection model (ESACD). In the encoder, we use the enhanced self-attention layer, CoT layer, instead of the normal convolution operation. The CoT layer fuses the dynamic context with the static context. Compared with the ordinary convolutional layer, this strategy can fully mine the local features between the input keys to dynamically enhance the feature representation. Subsequently, we use dual attention to further mine the low-frequency information and high-frequency information of the images and the semantic features of interest to the model. Dual attention consists of the HiLo attention mechanism and the Tokenizer attention mechanism. HiLo extracts high-frequency information and low-frequency information through two branches. In the high-frequency branch, nonoverlapping windows are applied to the features for self-attention. In the low-frequency branch, average pooling is first performed on features before self-attention. After Tokenizer attention extracts the feature tokens that the model is interested in, it encodes its information and, then, converts the tokens into pixel-level features. Tokenizer attention realizes the efficient extraction of features and enhances the representation ability of the model. Finally, we fuse feature information to enhance the fluidity of information and improve accuracy. Through our experiments on two change detection datasets, ESACD has better performance than other state-of-the-art methods while maintaining fewer parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的安阳完成签到,获得积分10
刚刚
xyzdmmm完成签到,获得积分10
1秒前
sun完成签到,获得积分10
1秒前
852应助寒冷雨竹采纳,获得10
2秒前
3秒前
3秒前
4秒前
Fiona发布了新的文献求助30
4秒前
好旺完成签到,获得积分10
4秒前
我是老大应助纯真万宝路采纳,获得10
4秒前
4秒前
www完成签到,获得积分10
5秒前
Owen应助sunliyan采纳,获得10
5秒前
5秒前
03210322完成签到 ,获得积分10
5秒前
狗子完成签到 ,获得积分10
6秒前
6秒前
研友_LJGmvn完成签到,获得积分10
7秒前
7秒前
ofnhqjh完成签到,获得积分10
7秒前
WCY发布了新的文献求助10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
kk应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
123456完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
X519664508完成签到,获得积分0
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
米奇发布了新的文献求助10
8秒前
10完成签到 ,获得积分10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
耿耿完成签到,获得积分10
8秒前
whatever应助科研通管家采纳,获得20
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568