Enhanced Self-Attention Network for Remote Sensing Building Change Detection

计算机科学 背景(考古学) 特征(语言学) 卷积(计算机科学) 编码器 图层(电子) 代表(政治) 特征提取 人工智能 联营 模式识别(心理学) 计算机视觉 人工神经网络 政治学 哲学 古生物学 操作系统 有机化学 化学 法学 政治 语言学 生物
作者
Shike Liang,Zhen Hua,Jinjiang Li
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4900-4915 被引量:7
标识
DOI:10.1109/jstars.2023.3278726
摘要

The self-attention mechanism can break the limitation of the receptive field, model in a global scope, and extract global information efficiently. In this work, we propose a lightweight remote sensing building change detection model (ESACD). In the encoder, we use the enhanced self-attention layer, CoT layer, instead of the normal convolution operation. The CoT layer fuses the dynamic context with the static context. Compared with the ordinary convolutional layer, this strategy can fully mine the local features between the input keys to dynamically enhance the feature representation. Subsequently, we use dual attention to further mine the low-frequency information and high-frequency information of the images and the semantic features of interest to the model. Dual attention consists of the HiLo attention mechanism and the Tokenizer attention mechanism. HiLo extracts high-frequency information and low-frequency information through two branches. In the high-frequency branch, nonoverlapping windows are applied to the features for self-attention. In the low-frequency branch, average pooling is first performed on features before self-attention. After Tokenizer attention extracts the feature tokens that the model is interested in, it encodes its information and, then, converts the tokens into pixel-level features. Tokenizer attention realizes the efficient extraction of features and enhances the representation ability of the model. Finally, we fuse feature information to enhance the fluidity of information and improve accuracy. Through our experiments on two change detection datasets, ESACD has better performance than other state-of-the-art methods while maintaining fewer parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds应助鸭鸭酱采纳,获得100
1秒前
1秒前
研友_VZG7GZ应助儒雅的巧曼采纳,获得10
2秒前
zhangjian19237完成签到,获得积分10
2秒前
情怀应助执着的冰蓝采纳,获得10
3秒前
3秒前
小小发布了新的文献求助10
3秒前
4秒前
5秒前
费老五完成签到 ,获得积分10
5秒前
龍Ryu发布了新的文献求助10
6秒前
Jiayi完成签到 ,获得积分10
6秒前
6秒前
小王发布了新的文献求助10
7秒前
8秒前
冲冲冲完成签到 ,获得积分10
8秒前
Archer发布了新的文献求助10
9秒前
qxy完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
VV发布了新的文献求助10
11秒前
11秒前
Ava应助细心的山槐采纳,获得10
11秒前
怕黑行恶完成签到,获得积分10
12秒前
楚岸完成签到,获得积分10
12秒前
12秒前
冲冲冲关注了科研通微信公众号
13秒前
14秒前
14秒前
14秒前
怡然的芯发布了新的文献求助10
15秒前
book思议发布了新的文献求助30
15秒前
16秒前
维拉帕米发布了新的文献求助10
16秒前
17秒前
17秒前
Yuanyuan发布了新的文献求助10
17秒前
Liziuan发布了新的文献求助10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281