材料科学
钒
化学工程
氧化钒
氧化还原
金属有机骨架
储能
离子
晶体结构
金属
氧化物
无机化学
结晶学
物理化学
有机化学
吸附
化学
冶金
功率(物理)
工程类
物理
量子力学
作者
Jingdong Guo,Jiaxin Liu,Weibing Ma,Zhiyuan Sang,Lichang Yin,Xueqi Zhang,Hao Chen,Ji Liang,De’an Yang
标识
DOI:10.1002/adfm.202302659
摘要
Abstract Vanadium oxides (VO x ) feature the potential for high‐capacity Zn 2+ storage, which are often preintercalated with inert ions or lattice water for accelerating Zn 2+ migration kinetics. The inertness of these preintercalated species for Zn 2+ storage and their incapability for conducting electrons, however, compromise the capacity and rate capability of VO x . Herein, Ni‐BTA, a 1D conductive metal–organic framework (c‐MOF), is intercalated into the interlayer space of VO x by coordinating organic ligands with preinserted Ni 2+ . The intercalated Ni‐BTA improves the conductivity of VO x by π –d conjugation, facilitates Zn 2+ migration by enlarging its interlayer spacing, and stabilizes the crystal structure of VO x as interlayer pillars, thus simultaneously enhancing the material's rate capability and cycling stability. Meanwhile, a dual reaction mechanism of Zn 2+ storage, i.e., the redox of V 5+ /V 3+ in VO x and the rearrangement of chemical bonds (CN/CN) in Ni‐BTA, collaboratively contributes to an enhanced capacity. Consequently, this Ni‐BTA‐intercalated VO x material exhibits a high Zn 2+ storage capacity of 464.2 mAh g −1 at 0.2 A g −1 and an excellent rate capability of 272.5 mAh g −1 at 5 A g −1 . This work provides a general strategy for integrating c‐MOFs with inorganic cathode materials to achieve high‐capacity and high‐rate performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI