Image semantic segmentation algorithm based on a multi-expert system

计算机科学 分割 人工智能 联营 帕斯卡(单位) 模式识别(心理学) 棱锥(几何) 卷积神经网络 图像分割 尺度空间分割 基于分割的对象分类 特征(语言学) 机器学习 数学 语言学 哲学 几何学 程序设计语言
作者
Sugang Ma,Zhao Ziyi,Zhiqiang Hou,Xiaobao Yang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033024
摘要

Deeplab series semantic segmentation algorithms extract target semantic features using deep layers of a convolutional neural network, resulting in target features lacking detailed information, such as edges and shapes extracted by shallow layers. Deeplabv3plus uses atrous convolution to obtain feature maps, which lose some image information. All of the above have an impact on segmentation performance improvement. In response to these issues, which reduce segmentation performance, we propose an image semantic segmentation algorithm based on a multi-expert system that builds multiple expert models based on the Deeplabv3plus network architecture. For the target image, each expert model makes independent judgments, and the segmentation results are obtained through the ensemble learning of these expert models. Expert model 1 employs the proposed attention-based atrous spatial pyramid pooling (C-ASPP) module to capture richer global semantic information via a parallel attention mechanism and ASSP module. Expert model 2 designs a feature fusion-based decoder that uses a feature fusion approach to obtain detailed information. Expert model 3 introduces a loss function in the Deeplabv3plus network for supervised detailed information loss. The final segmentation results are generated by adjudicating the results derived by the different expert models, which improves the segmentation performance by compensating for the loss of detailed information and enhancing the semantic features. Evaluated on the commonly used semantic segmentation datasets PASCAL VOC 2012 and CamVid, the algorithm's mIoU reached 82.42% and 69.18%, respectively, which were 2.46% and 1.82% higher than Deeplabv3plus, proving the better segmentation performance of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bei完成签到 ,获得积分10
1秒前
Bio应助混子小高采纳,获得30
1秒前
yao学渣完成签到 ,获得积分10
2秒前
不二臣发布了新的文献求助10
3秒前
可爱的函函应助kkk采纳,获得10
3秒前
斯文败类应助偷乐采纳,获得10
3秒前
Ava应助mariawang采纳,获得10
4秒前
girl发布了新的文献求助10
4秒前
orixero应助szl采纳,获得10
4秒前
自然初露关注了科研通微信公众号
5秒前
yu完成签到 ,获得积分10
5秒前
KingXing完成签到,获得积分10
6秒前
粗犷的灵松完成签到 ,获得积分10
6秒前
yyyyy关注了科研通微信公众号
8秒前
小姚发布了新的文献求助10
8秒前
wjw完成签到,获得积分10
9秒前
9秒前
毛小驴完成签到,获得积分10
10秒前
谢俏艳完成签到,获得积分10
10秒前
lm发布了新的文献求助10
10秒前
10秒前
10秒前
852应助咕噜咕噜咕嘟咕嘟采纳,获得10
11秒前
11秒前
小哥门完成签到,获得积分10
12秒前
Puan发布了新的文献求助10
12秒前
12秒前
sylnd126发布了新的文献求助10
13秒前
14秒前
峥2发布了新的文献求助10
14秒前
14秒前
吵吵robot发布了新的文献求助10
14秒前
15秒前
Nami发布了新的文献求助10
15秒前
吴丹完成签到,获得积分10
17秒前
17秒前
开放雪碧完成签到,获得积分10
17秒前
白日梦发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021