Image semantic segmentation algorithm based on a multi-expert system

计算机科学 分割 人工智能 联营 帕斯卡(单位) 模式识别(心理学) 棱锥(几何) 卷积神经网络 图像分割 尺度空间分割 基于分割的对象分类 特征(语言学) 机器学习 数学 哲学 语言学 几何学 程序设计语言
作者
Sugang Ma,Zhao Ziyi,Zhiqiang Hou,Xiaobao Yang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033024
摘要

Deeplab series semantic segmentation algorithms extract target semantic features using deep layers of a convolutional neural network, resulting in target features lacking detailed information, such as edges and shapes extracted by shallow layers. Deeplabv3plus uses atrous convolution to obtain feature maps, which lose some image information. All of the above have an impact on segmentation performance improvement. In response to these issues, which reduce segmentation performance, we propose an image semantic segmentation algorithm based on a multi-expert system that builds multiple expert models based on the Deeplabv3plus network architecture. For the target image, each expert model makes independent judgments, and the segmentation results are obtained through the ensemble learning of these expert models. Expert model 1 employs the proposed attention-based atrous spatial pyramid pooling (C-ASPP) module to capture richer global semantic information via a parallel attention mechanism and ASSP module. Expert model 2 designs a feature fusion-based decoder that uses a feature fusion approach to obtain detailed information. Expert model 3 introduces a loss function in the Deeplabv3plus network for supervised detailed information loss. The final segmentation results are generated by adjudicating the results derived by the different expert models, which improves the segmentation performance by compensating for the loss of detailed information and enhancing the semantic features. Evaluated on the commonly used semantic segmentation datasets PASCAL VOC 2012 and CamVid, the algorithm's mIoU reached 82.42% and 69.18%, respectively, which were 2.46% and 1.82% higher than Deeplabv3plus, proving the better segmentation performance of the algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
热心的巧克力完成签到,获得积分10
刚刚
爱听歌的糖豆完成签到,获得积分0
刚刚
暴躁的咖啡完成签到,获得积分20
刚刚
1秒前
十个勤天发布了新的文献求助10
2秒前
残荷听雨发布了新的文献求助10
2秒前
一枚研究僧完成签到,获得积分0
2秒前
dcx完成签到,获得积分10
2秒前
torch132完成签到,获得积分0
3秒前
不二小轩完成签到 ,获得积分10
3秒前
偏偏完成签到 ,获得积分10
3秒前
默默海冬应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
壹贰叁应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
小棠发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
树林红了发布了新的文献求助20
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
壹贰叁应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
恸哭的千鸟完成签到 ,获得积分10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
ztsn发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
壹贰叁应助科研通管家采纳,获得10
4秒前
合适的毛豆完成签到,获得积分10
4秒前
小金鱼完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595937
关于积分的说明 14450753
捐赠科研通 4528891
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653