Image semantic segmentation algorithm based on a multi-expert system

计算机科学 分割 人工智能 联营 帕斯卡(单位) 模式识别(心理学) 棱锥(几何) 卷积神经网络 图像分割 尺度空间分割 基于分割的对象分类 特征(语言学) 机器学习 数学 哲学 语言学 几何学 程序设计语言
作者
Sugang Ma,Zhao Ziyi,Zhiqiang Hou,Xiaobao Yang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033024
摘要

Deeplab series semantic segmentation algorithms extract target semantic features using deep layers of a convolutional neural network, resulting in target features lacking detailed information, such as edges and shapes extracted by shallow layers. Deeplabv3plus uses atrous convolution to obtain feature maps, which lose some image information. All of the above have an impact on segmentation performance improvement. In response to these issues, which reduce segmentation performance, we propose an image semantic segmentation algorithm based on a multi-expert system that builds multiple expert models based on the Deeplabv3plus network architecture. For the target image, each expert model makes independent judgments, and the segmentation results are obtained through the ensemble learning of these expert models. Expert model 1 employs the proposed attention-based atrous spatial pyramid pooling (C-ASPP) module to capture richer global semantic information via a parallel attention mechanism and ASSP module. Expert model 2 designs a feature fusion-based decoder that uses a feature fusion approach to obtain detailed information. Expert model 3 introduces a loss function in the Deeplabv3plus network for supervised detailed information loss. The final segmentation results are generated by adjudicating the results derived by the different expert models, which improves the segmentation performance by compensating for the loss of detailed information and enhancing the semantic features. Evaluated on the commonly used semantic segmentation datasets PASCAL VOC 2012 and CamVid, the algorithm's mIoU reached 82.42% and 69.18%, respectively, which were 2.46% and 1.82% higher than Deeplabv3plus, proving the better segmentation performance of the algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到 ,获得积分20
1秒前
2秒前
王肖宁发布了新的文献求助10
2秒前
ding应助1816013153采纳,获得30
2秒前
FashionBoy应助小胡爱学习采纳,获得10
3秒前
今后应助拾柒采纳,获得10
3秒前
sun完成签到,获得积分10
4秒前
Ava应助陈篱采纳,获得10
4秒前
生动的豆芽完成签到 ,获得积分10
4秒前
123321完成签到,获得积分10
5秒前
庞mou完成签到,获得积分10
5秒前
LingC完成签到,获得积分10
6秒前
小可发布了新的文献求助10
8秒前
coolkid完成签到 ,获得积分0
10秒前
11秒前
12秒前
12秒前
15秒前
16秒前
17秒前
18秒前
巩志成完成签到,获得积分10
19秒前
wxyshare举报害羞映容求助涉嫌违规
19秒前
19秒前
Pan完成签到,获得积分10
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
嘿嘿发布了新的文献求助10
23秒前
cccui发布了新的文献求助10
23秒前
escape完成签到,获得积分10
26秒前
无花果应助Guan采纳,获得10
26秒前
26秒前
小胡爱学习完成签到,获得积分10
26秒前
果冻呀发布了新的文献求助10
27秒前
Owen应助科研苦行僧采纳,获得10
27秒前
28秒前
jia发布了新的文献求助10
28秒前
29秒前
wsy发布了新的文献求助20
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093