Image semantic segmentation algorithm based on a multi-expert system

计算机科学 分割 人工智能 联营 帕斯卡(单位) 模式识别(心理学) 棱锥(几何) 卷积神经网络 图像分割 尺度空间分割 基于分割的对象分类 特征(语言学) 机器学习 数学 哲学 语言学 几何学 程序设计语言
作者
Sugang Ma,Zhao Ziyi,Zhiqiang Hou,Xiaobao Yang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033024
摘要

Deeplab series semantic segmentation algorithms extract target semantic features using deep layers of a convolutional neural network, resulting in target features lacking detailed information, such as edges and shapes extracted by shallow layers. Deeplabv3plus uses atrous convolution to obtain feature maps, which lose some image information. All of the above have an impact on segmentation performance improvement. In response to these issues, which reduce segmentation performance, we propose an image semantic segmentation algorithm based on a multi-expert system that builds multiple expert models based on the Deeplabv3plus network architecture. For the target image, each expert model makes independent judgments, and the segmentation results are obtained through the ensemble learning of these expert models. Expert model 1 employs the proposed attention-based atrous spatial pyramid pooling (C-ASPP) module to capture richer global semantic information via a parallel attention mechanism and ASSP module. Expert model 2 designs a feature fusion-based decoder that uses a feature fusion approach to obtain detailed information. Expert model 3 introduces a loss function in the Deeplabv3plus network for supervised detailed information loss. The final segmentation results are generated by adjudicating the results derived by the different expert models, which improves the segmentation performance by compensating for the loss of detailed information and enhancing the semantic features. Evaluated on the commonly used semantic segmentation datasets PASCAL VOC 2012 and CamVid, the algorithm's mIoU reached 82.42% and 69.18%, respectively, which were 2.46% and 1.82% higher than Deeplabv3plus, proving the better segmentation performance of the algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智大有完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
上官若男应助小颜采纳,获得10
1秒前
cuarzn发布了新的文献求助10
1秒前
友好的晓亦完成签到,获得积分10
2秒前
ZD完成签到,获得积分10
2秒前
沟通亿心发布了新的文献求助10
2秒前
wyx发布了新的文献求助10
2秒前
科目三应助Honey采纳,获得10
3秒前
喜之郎发布了新的文献求助10
3秒前
赘婿应助快乐达不刘采纳,获得10
3秒前
精灵梦完成签到,获得积分10
3秒前
PL发布了新的文献求助20
4秒前
李梦琦完成签到,获得积分20
4秒前
4秒前
fabian完成签到,获得积分10
4秒前
5秒前
Xue0129完成签到,获得积分10
6秒前
jike发布了新的文献求助10
6秒前
7秒前
纯真的柔发布了新的文献求助10
7秒前
mww完成签到,获得积分10
7秒前
MikiWu完成签到,获得积分10
8秒前
蒋22完成签到 ,获得积分10
8秒前
zoe完成签到 ,获得积分10
8秒前
8秒前
无花果应助skyangar采纳,获得10
8秒前
科研通AI6应助weiyu_u采纳,获得30
8秒前
hehe完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
慕青应助cuarzn采纳,获得10
9秒前
10秒前
玖玖完成签到,获得积分10
10秒前
惜昭发布了新的文献求助10
10秒前
11秒前
文艺代灵完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671