AlphaFold2-based structure prediction and target study of PD-L1 protein

杜瓦卢马布 阿替唑单抗 计算生物学 对接(动物) 抗体 药物发现 化学 结合位点 蛋白质结构 免疫疗法 计算机科学 免疫系统 生物 生物化学 无容量 医学 免疫学 护理部
作者
Zhuo‐ya Yang
标识
DOI:10.54254/2753-8818/3/20220152
摘要

PD-L1 is an immune protein in human body that can play an important role in cancer immunotherapy. By binding to antibodies, the binding activity of PD-L1 and PD-1 is blocked, which in turn inhibits cancer cells. Thus the structure of PD-L1 is very important in studying the binding of antibodies to it. However, experimental methods to solve the structures of PD- L1 and numerous complexes are expensive and consuming. Thus, it is essential to exploit computational methods to help biologists figure out the structures and the underlying mechanisms. In this paper, we explore whether AlphaFold2 is able to accurately predict the structure of PD-L1 and whether we can use AlphaFold2 to capture the binding sites of PD-L1 when binding to different antibodies. Our results show that AlphaFold2 has high confident scores and accuracy in predicting the structure of PD-L1 and the binding sites with atezolizumab and durvalumab. For the interaction between PD-L1 and the antibodies, AlphaFold2 can capture most of the hydrogen bonds as well as the salt bridges. Our work suggests that AlphaFold2 can not only be used as a tool to predict the structure of proteins, but also serves as a useful tool for antibody discovery, e.g. providing high-quality predicted structures for downstreaming docking, which brings new hope for drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
苍鹰发布了新的文献求助30
1秒前
幸运周一完成签到 ,获得积分10
1秒前
Hello应助景穆采纳,获得10
2秒前
fhghhhjh完成签到,获得积分10
2秒前
3秒前
艾思米利完成签到,获得积分20
4秒前
lieeey发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助liyi采纳,获得10
7秒前
诗酒发布了新的文献求助10
7秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得20
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
破三贼发布了新的文献求助10
9秒前
10秒前
龙仔子完成签到,获得积分10
11秒前
11秒前
不安的半梦完成签到,获得积分10
12秒前
诗酒完成签到,获得积分10
12秒前
龙仔子发布了新的文献求助10
13秒前
mayuzumi完成签到,获得积分10
14秒前
破三贼完成签到,获得积分10
15秒前
Leon发布了新的文献求助30
15秒前
17秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498