AlphaFold2-based structure prediction and target study of PD-L1 protein

杜瓦卢马布 阿替唑单抗 计算生物学 对接(动物) 抗体 药物发现 化学 结合位点 蛋白质结构 免疫疗法 计算机科学 免疫系统 生物 生物化学 无容量 医学 免疫学 护理部
作者
Zhuo‐ya Yang
标识
DOI:10.54254/2753-8818/3/20220152
摘要

PD-L1 is an immune protein in human body that can play an important role in cancer immunotherapy. By binding to antibodies, the binding activity of PD-L1 and PD-1 is blocked, which in turn inhibits cancer cells. Thus the structure of PD-L1 is very important in studying the binding of antibodies to it. However, experimental methods to solve the structures of PD- L1 and numerous complexes are expensive and consuming. Thus, it is essential to exploit computational methods to help biologists figure out the structures and the underlying mechanisms. In this paper, we explore whether AlphaFold2 is able to accurately predict the structure of PD-L1 and whether we can use AlphaFold2 to capture the binding sites of PD-L1 when binding to different antibodies. Our results show that AlphaFold2 has high confident scores and accuracy in predicting the structure of PD-L1 and the binding sites with atezolizumab and durvalumab. For the interaction between PD-L1 and the antibodies, AlphaFold2 can capture most of the hydrogen bonds as well as the salt bridges. Our work suggests that AlphaFold2 can not only be used as a tool to predict the structure of proteins, but also serves as a useful tool for antibody discovery, e.g. providing high-quality predicted structures for downstreaming docking, which brings new hope for drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XNF发布了新的文献求助10
刚刚
一只不受管束的小狸Miao完成签到,获得积分10
1秒前
lkl完成签到 ,获得积分10
1秒前
王京发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
牛豁发布了新的文献求助10
2秒前
3秒前
小刘发布了新的文献求助10
3秒前
丰富的不惜完成签到,获得积分10
3秒前
hhhh应助djbj2022采纳,获得10
3秒前
科研通AI6应助lifang采纳,获得10
4秒前
大模型应助yy采纳,获得10
4秒前
6秒前
风果然是风完成签到,获得积分10
7秒前
8秒前
11111发布了新的文献求助10
8秒前
Ziqing完成签到,获得积分10
8秒前
面壁思过应助xh采纳,获得10
8秒前
畅快不平发布了新的文献求助10
8秒前
大虫子完成签到,获得积分10
8秒前
9秒前
炙热草丛发布了新的文献求助10
9秒前
XNF完成签到,获得积分10
10秒前
我是老大应助谦让靖儿采纳,获得10
10秒前
聪明的忆丹完成签到 ,获得积分10
11秒前
年轻的熊猫完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
Brave发布了新的文献求助10
14秒前
机灵的衬衫完成签到 ,获得积分10
14秒前
15秒前
Echo发布了新的文献求助10
16秒前
浮游应助柚子采纳,获得10
16秒前
阿信必发JACS完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901