AlphaFold2-based structure prediction and target study of PD-L1 protein

杜瓦卢马布 阿替唑单抗 计算生物学 对接(动物) 抗体 药物发现 化学 结合位点 蛋白质结构 免疫疗法 计算机科学 免疫系统 生物 生物化学 无容量 医学 免疫学 护理部
作者
Zhuo‐ya Yang
标识
DOI:10.54254/2753-8818/3/20220152
摘要

PD-L1 is an immune protein in human body that can play an important role in cancer immunotherapy. By binding to antibodies, the binding activity of PD-L1 and PD-1 is blocked, which in turn inhibits cancer cells. Thus the structure of PD-L1 is very important in studying the binding of antibodies to it. However, experimental methods to solve the structures of PD- L1 and numerous complexes are expensive and consuming. Thus, it is essential to exploit computational methods to help biologists figure out the structures and the underlying mechanisms. In this paper, we explore whether AlphaFold2 is able to accurately predict the structure of PD-L1 and whether we can use AlphaFold2 to capture the binding sites of PD-L1 when binding to different antibodies. Our results show that AlphaFold2 has high confident scores and accuracy in predicting the structure of PD-L1 and the binding sites with atezolizumab and durvalumab. For the interaction between PD-L1 and the antibodies, AlphaFold2 can capture most of the hydrogen bonds as well as the salt bridges. Our work suggests that AlphaFold2 can not only be used as a tool to predict the structure of proteins, but also serves as a useful tool for antibody discovery, e.g. providing high-quality predicted structures for downstreaming docking, which brings new hope for drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
呼呼啦啦完成签到,获得积分10
13秒前
上官若男应助明理的凌旋采纳,获得10
14秒前
14秒前
哎呀呀的小胖胖完成签到,获得积分10
15秒前
研友_LB1rk8完成签到,获得积分10
15秒前
yangyang发布了新的文献求助10
15秒前
lu完成签到 ,获得积分10
17秒前
wujuan完成签到 ,获得积分10
18秒前
xs完成签到,获得积分10
20秒前
共享精神应助聪明的惜芹采纳,获得10
21秒前
21秒前
yyk关闭了yyk文献求助
22秒前
子合发布了新的文献求助10
23秒前
24秒前
Quiller.Wang发布了新的文献求助10
25秒前
领导范儿应助COCO采纳,获得10
26秒前
27秒前
两仪完成签到,获得积分10
31秒前
自由幻梦发布了新的文献求助10
31秒前
32秒前
打打应助An采纳,获得10
33秒前
泥娃娃完成签到,获得积分10
34秒前
34秒前
FashionBoy应助智慧爷爷采纳,获得10
39秒前
hgzz完成签到 ,获得积分10
39秒前
ding应助自由幻梦采纳,获得10
40秒前
40秒前
40秒前
tion66完成签到 ,获得积分10
41秒前
42秒前
cm_1231完成签到 ,获得积分10
43秒前
quzhenzxxx发布了新的文献求助10
43秒前
王某完成签到,获得积分10
43秒前
45秒前
活泼凌青发布了新的文献求助10
47秒前
大概是粥粥完成签到,获得积分20
48秒前
COCO发布了新的文献求助10
50秒前
kily关注了科研通微信公众号
52秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350943
求助须知:如何正确求助?哪些是违规求助? 2976496
关于积分的说明 8675277
捐赠科研通 2657650
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225