Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,E.N.G. Poh Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PF发布了新的文献求助10
3秒前
CipherSage应助上进采纳,获得10
5秒前
所所应助小赵采纳,获得10
6秒前
6秒前
6秒前
7秒前
JOEY关注了科研通微信公众号
7秒前
fanyueyue应助lll采纳,获得10
7秒前
PF完成签到,获得积分10
8秒前
zhangyu应助Gengar采纳,获得10
9秒前
10秒前
小蘑菇应助卿18900681672采纳,获得10
10秒前
10秒前
谦让的莆完成签到 ,获得积分10
11秒前
黎少俊完成签到,获得积分10
11秒前
隐形曼青应助一坨采纳,获得30
11秒前
11秒前
平平发布了新的文献求助10
12秒前
yn发布了新的文献求助50
12秒前
研究僧发布了新的文献求助10
13秒前
14秒前
ggg发布了新的文献求助10
15秒前
shatang完成签到 ,获得积分10
17秒前
17秒前
激动的访文完成签到,获得积分10
18秒前
守仁则阳明完成签到 ,获得积分10
19秒前
20秒前
20秒前
无误发布了新的文献求助10
20秒前
21秒前
爆米花应助honey采纳,获得10
21秒前
隐形曼青应助moumou采纳,获得20
22秒前
神勇的荟完成签到 ,获得积分10
22秒前
康康完成签到 ,获得积分10
23秒前
JOEY发布了新的文献求助50
24秒前
24秒前
24秒前
25秒前
可爱的函函应助CY采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020