Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,E.N.G. Poh Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY完成签到 ,获得积分10
刚刚
善学以致用应助Xu采纳,获得10
刚刚
科研通AI5应助李佳笑采纳,获得10
2秒前
科研通AI2S应助专注的糖豆采纳,获得10
3秒前
青檬完成签到 ,获得积分10
3秒前
xinjiasuki完成签到 ,获得积分0
4秒前
林惊语完成签到 ,获得积分10
4秒前
谨慎的凝丝完成签到,获得积分10
4秒前
Vicky完成签到,获得积分10
5秒前
wwsss完成签到,获得积分10
5秒前
叶子完成签到,获得积分10
6秒前
6秒前
8秒前
研究生完成签到 ,获得积分10
9秒前
体贴的叛逆者完成签到,获得积分10
9秒前
10秒前
半钱半夏完成签到,获得积分10
10秒前
彪壮的绮烟完成签到,获得积分10
11秒前
淡定井完成签到 ,获得积分10
12秒前
大只仙仙完成签到 ,获得积分10
12秒前
橙汁完成签到 ,获得积分10
12秒前
SUMMER发布了新的文献求助10
13秒前
小刘哥加油完成签到 ,获得积分10
13秒前
Aluhaer应助李佳笑采纳,获得150
13秒前
13秒前
hahaaa发布了新的文献求助10
14秒前
研友_LXdbaL完成签到,获得积分10
14秒前
lllllllll完成签到,获得积分10
14秒前
潜行者完成签到 ,获得积分10
15秒前
馆长应助枯藤老柳树采纳,获得30
15秒前
执着可仁完成签到 ,获得积分10
16秒前
洁净的天德完成签到,获得积分10
17秒前
扣子完成签到 ,获得积分10
18秒前
瘦墩墩完成签到 ,获得积分10
18秒前
GHL完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
Jennifer发布了新的文献求助10
20秒前
聚散流沙完成签到,获得积分10
20秒前
脑洞疼应助大侦探皮卡丘采纳,获得10
21秒前
yzy完成签到,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118239
求助须知:如何正确求助?哪些是违规求助? 4324264
关于积分的说明 13471552
捐赠科研通 4157245
什么是DOI,文献DOI怎么找? 2278331
邀请新用户注册赠送积分活动 1280118
关于科研通互助平台的介绍 1218753