亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,Enfan Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1010-1020 被引量:11
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助XIII采纳,获得10
2秒前
6秒前
一只大嵩鼠完成签到 ,获得积分10
9秒前
霸气的忆丹完成签到 ,获得积分10
10秒前
琪yt完成签到,获得积分20
12秒前
13秒前
18秒前
琪yt发布了新的文献求助10
19秒前
21秒前
22秒前
XIII发布了新的文献求助10
27秒前
33秒前
33秒前
wangll发布了新的文献求助10
37秒前
乐乐应助买三个包子吧采纳,获得10
37秒前
二丙发布了新的文献求助10
38秒前
Fan完成签到 ,获得积分10
38秒前
38秒前
果冻完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
Nature应助HUGGSY采纳,获得10
42秒前
甜美的傲珊完成签到,获得积分10
45秒前
戴鹿角王冠的拉斯特完成签到,获得积分10
46秒前
二丙完成签到,获得积分10
51秒前
58秒前
希望天下0贩的0应助zzf采纳,获得10
59秒前
酷波er应助wangll采纳,获得10
1分钟前
1分钟前
1分钟前
芒果完成签到 ,获得积分10
1分钟前
欢欢发布了新的文献求助10
1分钟前
zzf发布了新的文献求助10
1分钟前
ok完成签到,获得积分10
1分钟前
遇上就这样吧应助ceeray23采纳,获得200
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
炙热的雪糕完成签到,获得积分10
1分钟前
1分钟前
zzf完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949