Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,Enfan Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1010-1020 被引量:11
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lay发布了新的文献求助10
1秒前
CodeCraft应助热心市民采纳,获得10
1秒前
Orange应助开放鹤轩采纳,获得30
1秒前
狗子棋发布了新的文献求助10
2秒前
2秒前
2秒前
赵睿老婆完成签到 ,获得积分10
2秒前
ziyuexu发布了新的文献求助10
3秒前
airvince发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
大个应助wallonce采纳,获得10
5秒前
5秒前
5秒前
bkagyin应助zsl采纳,获得10
6秒前
赘婿应助知性的睫毛膏采纳,获得10
8秒前
8秒前
wei完成签到,获得积分10
9秒前
561发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
华仔应助LX采纳,获得30
11秒前
阔达惜天应助等待凡英采纳,获得10
12秒前
无极微光应助冷静青文采纳,获得20
12秒前
lay完成签到,获得积分10
12秒前
13秒前
xxc发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
jackie发布了新的文献求助10
15秒前
汉堡包应助Plusonezzz采纳,获得30
16秒前
18秒前
18秒前
楼马完成签到 ,获得积分10
18秒前
LX完成签到,获得积分10
18秒前
19秒前
19秒前
www发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282