清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,Enfan Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1010-1020 被引量:11
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kmning发布了新的文献求助10
4秒前
风停了完成签到,获得积分10
7秒前
charih完成签到 ,获得积分10
9秒前
14秒前
Akim应助kmning采纳,获得10
18秒前
量子星尘发布了新的文献求助10
31秒前
科研通AI6应助Criminology34采纳,获得100
1分钟前
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
科研通AI6应助Criminology34采纳,获得100
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
Ava应助Kyrie采纳,获得10
2分钟前
某奈在看海完成签到,获得积分10
3分钟前
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
莫莫完成签到 ,获得积分10
3分钟前
Kyrie完成签到,获得积分10
3分钟前
研友_8WOBM8发布了新的文献求助10
4分钟前
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
yyds给yyds的求助进行了留言
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
烂漫的绿茶完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
yyds发布了新的文献求助30
6分钟前
量子星尘发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
7分钟前
Square完成签到,获得积分10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658233
求助须知:如何正确求助?哪些是违规求助? 4818796
关于积分的说明 15081057
捐赠科研通 4816735
什么是DOI,文献DOI怎么找? 2577564
邀请新用户注册赠送积分活动 1532491
关于科研通互助平台的介绍 1491120