Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,Enfan Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1010-1020 被引量:11
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曲曲完成签到,获得积分10
1秒前
1秒前
liufangrui完成签到,获得积分10
2秒前
2秒前
梨儿萌死完成签到,获得积分10
3秒前
李爱国应助Liana_Liu采纳,获得10
3秒前
danielsong发布了新的文献求助10
3秒前
无私的紫文完成签到,获得积分20
3秒前
4秒前
5秒前
5秒前
甜甜的冰淇淋完成签到,获得积分10
5秒前
5秒前
孙燕应助风清扬采纳,获得59
5秒前
zwj发布了新的文献求助10
6秒前
dyh关闭了dyh文献求助
7秒前
mmy完成签到,获得积分10
7秒前
Jerry完成签到 ,获得积分10
7秒前
zzx发布了新的文献求助10
7秒前
Ava应助酷酷问薇采纳,获得10
8秒前
1234发布了新的文献求助10
8秒前
rixinsu发布了新的文献求助10
9秒前
9秒前
9秒前
超帅的南珍完成签到,获得积分10
9秒前
9秒前
虚幻蹇完成签到,获得积分10
9秒前
冷傲的薯片完成签到 ,获得积分10
10秒前
Jasper应助karL采纳,获得10
10秒前
mirrovo发布了新的文献求助100
10秒前
10秒前
英姑应助无私的紫文采纳,获得10
10秒前
大个应助rixinsu采纳,获得10
13秒前
恣意发布了新的文献求助10
14秒前
14秒前
星辰大海应助失眠的寄翠采纳,获得10
14秒前
14秒前
wanci应助zzx采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379