Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,Enfan Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1010-1020 被引量:11
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粥游天下发布了新的文献求助20
1秒前
wy.he应助自由的雅容采纳,获得10
1秒前
1秒前
1秒前
yuanpiao完成签到,获得积分10
2秒前
9Songs发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
海昌完成签到 ,获得积分10
3秒前
3秒前
Lucas应助典雅的俊驰采纳,获得10
4秒前
4秒前
椰壳发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
jc发布了新的文献求助10
5秒前
自信项链发布了新的文献求助20
6秒前
luping28发布了新的文献求助10
6秒前
Able_sci完成签到,获得积分10
6秒前
6秒前
vvvvyl完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
香蕉觅云应助yyyg采纳,获得10
8秒前
8秒前
空啊空完成签到 ,获得积分10
8秒前
vvvvyl发布了新的文献求助10
8秒前
曾经以亦发布了新的文献求助10
8秒前
8秒前
9秒前
最强大脑袋完成签到,获得积分10
10秒前
xixi发布了新的文献求助10
10秒前
木子李发布了新的文献求助10
11秒前
情怀应助jc采纳,获得10
12秒前
清秀的善愁完成签到,获得积分10
12秒前
zl12应助风中的丝袜采纳,获得10
14秒前
聪慧若风完成签到,获得积分10
15秒前
希望天下0贩的0应助hannah采纳,获得10
15秒前
yuyuyu完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573