Predicting FDG‐PET Images From Multi‐Contrast MRI Using Deep Learning in Patients With Brain Neoplasms

核医学 医学 氟脱氧葡萄糖 正电子发射断层摄影术 标准摄取值 Pet成像 图像质量 人工智能 计算机科学 图像(数学)
作者
Jiahong Ouyang,Kevin T. Chen,Rui Duarte Armindo,Guido Davidzon,K. Elizabeth Hawk,Farshad Moradi,Jarrett Rosenberg,E.N.G. Poh Lan,Helena Zhang,Greg Zaharchuk
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:2
标识
DOI:10.1002/jmri.28837
摘要

Background 18 F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) is valuable for determining presence of viable tumor, but is limited by geographical restrictions, radiation exposure, and high cost. Purpose To generate diagnostic‐quality PET equivalent imaging for patients with brain neoplasms by deep learning with multi‐contrast MRI. Study Type Retrospective. Subjects Patients (59 studies from 51 subjects; age 56 ± 13 years; 29 males) who underwent 18 F‐FDG PET and MRI for determining recurrent brain tumor. Field Strength/Sequence 3T; 3D GRE T1, 3D GRE T1c, 3D FSE T2‐FLAIR, and 3D FSE ASL, 18 F‐FDG PET imaging. Assessment Convolutional neural networks were trained using four MRIs as inputs and acquired FDG PET images as output. The agreement between the acquired and synthesized PET was evaluated by quality metrics and Bland–Altman plots for standardized uptake value ratio. Three physicians scored image quality on a 5‐point scale, with score ≥3 as high‐quality. They assessed the lesions on a 5‐point scale, which was binarized to analyze diagnostic consistency of the synthesized PET compared to the acquired PET. Statistical Tests The agreement in ratings between the acquired and synthesized PET were tested with Gwet's AC and exact Bowker test of symmetry. Agreement of the readers was assessed by Gwet's AC. P = 0.05 was used as the cutoff for statistical significance. Results The synthesized PET visually resembled the acquired PET and showed significant improvement in quality metrics (+21.7% on PSNR, +22.2% on SSIM, −31.8% on RSME) compared with ASL. A total of 49.7% of the synthesized PET were considered as high‐quality compared to 73.4% of the acquired PET which was statistically significant, but with distinct variability between readers. For the positive/negative lesion assessment, the synthesized PET had an accuracy of 87% but had a tendency to overcall. Conclusion The proposed deep learning model has the potential of synthesizing diagnostic quality FDG PET images without the use of radiotracers. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
1秒前
122发布了新的文献求助10
1秒前
1秒前
鼠鼠想养猫完成签到,获得积分10
1秒前
JD.发布了新的文献求助10
2秒前
zhao完成签到,获得积分10
2秒前
zyd发布了新的文献求助10
2秒前
喜悦的尔阳完成签到,获得积分10
3秒前
zz发布了新的文献求助10
4秒前
5秒前
5秒前
acz发布了新的文献求助10
5秒前
5秒前
喵喵7完成签到 ,获得积分10
5秒前
6秒前
waive关注了科研通微信公众号
6秒前
6秒前
香蕉觅云应助Gin采纳,获得10
6秒前
6秒前
传奇3应助JD.采纳,获得10
7秒前
睡到自然醒完成签到 ,获得积分10
7秒前
瞬间完成签到,获得积分10
7秒前
zhao发布了新的文献求助10
8秒前
Hello应助普通用户30号采纳,获得30
8秒前
文文完成签到 ,获得积分20
8秒前
9秒前
wz5582发布了新的文献求助10
9秒前
Willy完成签到 ,获得积分10
9秒前
122完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
香蕉书竹发布了新的文献求助30
12秒前
13秒前
大咖发布了新的文献求助10
14秒前
15秒前
早发论文应助积极书双采纳,获得10
15秒前
思源应助li采纳,获得10
15秒前
wz5582完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160253
求助须知:如何正确求助?哪些是违规求助? 2811323
关于积分的说明 7891987
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315488
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038