Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer

瘤芽 H&E染色 数字化病理学 医学 结直肠癌 病理 组织病理学 免疫组织化学 转移 癌症 内科学 淋巴结转移
作者
John‐Melle Bokhorst,Francesco Ciompi,Sonay Kus Öztürk,Ayşe Erdoğan,Michael Vieth,Heather Dawson,Richard Kirsch,Femke Simmer,Kieran Sheahan,Alessandro Lugli,Inti Zlobec,Jeroen van der Laak,Irıs D. Nagtegaal
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:36 (9): 100233-100233 被引量:14
标识
DOI:10.1016/j.modpat.2023.100233
摘要

Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International definitions are necessary to reduce interobserver variability. According to the current international guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H&E)-stained slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method for detecting TB in H&E-stained whole slide images. We propose a fully automated pipeline to identify the tumor border, detect tumor buds, characterize them based on the number of tumor cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in the hotspot as a computational biomarker. We show that the proposed automated TB detection workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n = 981 patients with CRC. Computer-aided detection of tumor buds based on deep learning can perform on par with expert pathologists for the detection and quantification of tumor buds in H&E-stained CRC histopathology slides, strongly facilitating the introduction of budding as an independent prognosticator in clinical routine and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助摆烂包菜采纳,获得10
刚刚
1秒前
2秒前
乔钰涵发布了新的文献求助10
3秒前
李健的粉丝团团长应助bing采纳,获得10
3秒前
3秒前
斯文败类应助月宸采纳,获得10
3秒前
hhh完成签到,获得积分20
5秒前
调皮芫发布了新的文献求助10
7秒前
小小小发布了新的文献求助10
7秒前
顾矜应助王明浩采纳,获得30
8秒前
8秒前
Jasper应助紧张的毛衣采纳,获得10
8秒前
10秒前
10秒前
陆66完成签到 ,获得积分10
11秒前
12秒前
在水一方应助调皮芫采纳,获得10
13秒前
bing发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
17秒前
mwl发布了新的文献求助10
19秒前
dui发布了新的文献求助10
19秒前
zydd完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助150
19秒前
21秒前
21秒前
RR发布了新的文献求助10
22秒前
23秒前
崔懿龍发布了新的文献求助10
23秒前
24秒前
希望天下0贩的0应助小渔采纳,获得10
25秒前
25秒前
牛马发布了新的文献求助10
26秒前
liu66完成签到,获得积分10
26秒前
walk发布了新的文献求助10
26秒前
东方天奇完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950925
求助须知:如何正确求助?哪些是违规求助? 4213683
关于积分的说明 13105422
捐赠科研通 3995528
什么是DOI,文献DOI怎么找? 2186939
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115421