Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer

瘤芽 H&E染色 数字化病理学 医学 结直肠癌 病理 组织病理学 免疫组织化学 转移 癌症 内科学 淋巴结转移
作者
John‐Melle Bokhorst,Francesco Ciompi,Sonay Kus Öztürk,Ayşe Erdoğan,Michael Vieth,Heather Dawson,Richard Kirsch,Femke Simmer,Kieran Sheahan,Alessandro Lugli,Inti Zlobec,Jeroen van der Laak,Irıs D. Nagtegaal
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:36 (9): 100233-100233 被引量:9
标识
DOI:10.1016/j.modpat.2023.100233
摘要

Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International definitions are necessary to reduce interobserver variability. According to the current international guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H&E)-stained slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method for detecting TB in H&E-stained whole slide images. We propose a fully automated pipeline to identify the tumor border, detect tumor buds, characterize them based on the number of tumor cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in the hotspot as a computational biomarker. We show that the proposed automated TB detection workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n = 981 patients with CRC. Computer-aided detection of tumor buds based on deep learning can perform on par with expert pathologists for the detection and quantification of tumor buds in H&E-stained CRC histopathology slides, strongly facilitating the introduction of budding as an independent prognosticator in clinical routine and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fahbfafajk完成签到,获得积分10
1秒前
wanci应助goldNAN采纳,获得10
1秒前
1秒前
张光光发布了新的文献求助10
2秒前
蜜雪冰城完成签到,获得积分10
2秒前
yshog发布了新的文献求助10
2秒前
狗十七发布了新的文献求助10
3秒前
苏yb完成签到,获得积分10
3秒前
3秒前
water应助qsxy采纳,获得10
4秒前
可取发布了新的文献求助10
4秒前
4秒前
phw完成签到,获得积分10
5秒前
5秒前
Wang完成签到,获得积分10
5秒前
BaekHyun完成签到,获得积分10
5秒前
开心完成签到 ,获得积分10
6秒前
怡然云朵发布了新的文献求助10
6秒前
刘芳菲完成签到,获得积分10
7秒前
9秒前
温柔的语柔完成签到,获得积分10
9秒前
义气的凡灵完成签到,获得积分10
10秒前
盆栽完成签到,获得积分10
10秒前
大yu乐家完成签到,获得积分10
10秒前
皮凡发布了新的文献求助10
10秒前
张光光完成签到,获得积分10
11秒前
小蘑菇应助淳于三问采纳,获得30
11秒前
Kuta完成签到,获得积分10
11秒前
12秒前
12秒前
fd163c完成签到 ,获得积分10
13秒前
14秒前
Amu1uu完成签到,获得积分10
14秒前
15秒前
15秒前
ding完成签到,获得积分10
15秒前
小包包发布了新的文献求助10
15秒前
榴莲奶黄包完成签到,获得积分10
15秒前
DLY发布了新的文献求助20
16秒前
Ww完成签到,获得积分20
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118