亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer

瘤芽 H&E染色 数字化病理学 医学 结直肠癌 病理 组织病理学 免疫组织化学 转移 癌症 内科学 淋巴结转移
作者
John‐Melle Bokhorst,Francesco Ciompi,Sonay Kus Öztürk,Ayşe Erdoğan,Michael Vieth,Heather Dawson,Richard Kirsch,Femke Simmer,Kieran Sheahan,Alessandro Lugli,Inti Zlobec,Jeroen van der Laak,Irıs D. Nagtegaal
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (9): 100233-100233 被引量:14
标识
DOI:10.1016/j.modpat.2023.100233
摘要

Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International definitions are necessary to reduce interobserver variability. According to the current international guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H&E)-stained slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method for detecting TB in H&E-stained whole slide images. We propose a fully automated pipeline to identify the tumor border, detect tumor buds, characterize them based on the number of tumor cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in the hotspot as a computational biomarker. We show that the proposed automated TB detection workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n = 981 patients with CRC. Computer-aided detection of tumor buds based on deep learning can perform on par with expert pathologists for the detection and quantification of tumor buds in H&E-stained CRC histopathology slides, strongly facilitating the introduction of budding as an independent prognosticator in clinical routine and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏以完成签到,获得积分10
33秒前
体贴静竹完成签到 ,获得积分10
50秒前
58秒前
星辰大海应助科研通管家采纳,获得10
1分钟前
清晨仪仪发布了新的文献求助10
1分钟前
1分钟前
朴素尔阳发布了新的文献求助10
2分钟前
2分钟前
webmaster完成签到,获得积分10
2分钟前
向东是大海完成签到,获得积分10
2分钟前
2分钟前
CC发布了新的文献求助10
3分钟前
万能图书馆应助清晨仪仪采纳,获得30
3分钟前
Yihan完成签到,获得积分10
3分钟前
科研王者发布了新的文献求助10
3分钟前
老万的小迷弟完成签到,获得积分10
3分钟前
JoeyJin完成签到,获得积分10
3分钟前
我是老大应助科研王者采纳,获得10
3分钟前
4分钟前
yeeeee发布了新的文献求助10
4分钟前
ttkx发布了新的文献求助10
4分钟前
CipherSage应助yeeeee采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
artos发布了新的文献求助30
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
科研通AI6应助artos采纳,获得10
6分钟前
华仔应助CC采纳,获得30
6分钟前
7分钟前
CC发布了新的文献求助30
7分钟前
执着梦柏完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
8分钟前
清晨仪仪发布了新的文献求助30
8分钟前
8分钟前
步念发布了新的文献求助30
8分钟前
科研通AI6应助步念采纳,获得30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053