Selective and Stable CO2 Electroreduction to CH4 via Electronic Metal–Support Interaction upon Decomposition/Redeposition of MOF

催化作用 电化学 法拉第效率 材料科学 电解质 选择性 无机化学 吸附 可逆氢电极 化学工程 分解 密度泛函理论 金属 无定形固体 无定形碳 电极 化学 物理化学 计算化学 工作电极 有机化学 工程类 冶金
作者
Guanyu Liu,Quang Thang Trịnh,Haojing Wang,Shuyang Wu,Juan Manuel Arce‐Ramos,Michael B. Sullivan,Markus Kraft,Joel W. Ager,Jia Zhang,Rong Xu
出处
期刊:Small [Wiley]
卷期号:19 (41): e2301379-e2301379 被引量:39
标识
DOI:10.1002/smll.202301379
摘要

Abstract The CO 2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal–support interaction, to improve the catalytic selectivity. Here a solvent‐free synthesis method is reported to prepare a copper (Cu)‐based metal–organic framework (MOF) as the precursor. Upon electrochemical CO 2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH 4 with a Faradaic efficiency of ≈55% at −1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO 2 reduction to CH 4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH 4 . Therefore, it is envisioned that the strategy of regulating electronic metal–support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO 2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助HanZhang采纳,获得10
刚刚
BareBear应助高高手采纳,获得10
1秒前
李健应助wang采纳,获得10
2秒前
2秒前
by完成签到,获得积分10
3秒前
3秒前
3秒前
清浅发布了新的文献求助30
4秒前
太想进部了完成签到,获得积分10
4秒前
4秒前
JamesPei应助干净的友卉采纳,获得10
4秒前
打打应助今天没有哭鸭采纳,获得10
4秒前
JamesPei应助易烊千玺老婆采纳,获得10
4秒前
4秒前
5秒前
852应助SYX采纳,获得30
5秒前
斯文败类应助小小小小采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
坚定晓兰应助HAHA采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
热心的易烟完成签到,获得积分10
5秒前
6秒前
Hello应助小学生采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
song发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
alvis关注了科研通微信公众号
8秒前
LingMg发布了新的文献求助30
9秒前
不安溪灵完成签到,获得积分10
9秒前
9秒前
9秒前
熊猫海发布了新的文献求助10
9秒前
10秒前
伞下铭发布了新的文献求助10
10秒前
10秒前
11秒前
Herzing发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002