Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛋仔完成签到 ,获得积分10
1秒前
minmi发布了新的文献求助20
1秒前
罐罐完成签到,获得积分10
1秒前
1秒前
蘓蘓发布了新的文献求助10
1秒前
木展子发布了新的文献求助10
2秒前
七八九发布了新的文献求助10
2秒前
2秒前
2秒前
风中垣发布了新的文献求助10
3秒前
3秒前
4秒前
汉堡包应助安安采纳,获得10
4秒前
wengjiaqi完成签到,获得积分10
4秒前
4秒前
七七发布了新的文献求助30
5秒前
乐乐应助正直的沛凝采纳,获得20
6秒前
量子星尘发布了新的文献求助30
6秒前
今天你读文献了吗完成签到,获得积分10
6秒前
6秒前
科研通AI6应助青年才俊采纳,获得10
8秒前
静一发布了新的文献求助10
8秒前
9秒前
9秒前
愉快向彤完成签到 ,获得积分10
10秒前
11秒前
FashionBoy应助哈维撞墙采纳,获得10
12秒前
12秒前
12秒前
儒雅的裘发布了新的文献求助10
13秒前
赘婿应助一头小飞猪采纳,获得10
13秒前
郑郑发布了新的文献求助10
14秒前
qaz发布了新的文献求助10
14秒前
七七完成签到,获得积分10
15秒前
静一完成签到,获得积分10
15秒前
完美世界应助开放的乐儿采纳,获得10
15秒前
15秒前
15秒前
hyf发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020