亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
松松发布了新的文献求助10
5秒前
ff发布了新的文献求助10
9秒前
10秒前
bruna发布了新的文献求助30
10秒前
orixero应助松松采纳,获得10
15秒前
Ryuki完成签到 ,获得积分10
15秒前
Omni完成签到,获得积分10
25秒前
ff完成签到,获得积分10
27秒前
28秒前
善学以致用应助ff采纳,获得10
31秒前
小邸应助科研通管家采纳,获得10
34秒前
小邸应助科研通管家采纳,获得10
34秒前
大模型应助科研通管家采纳,获得10
34秒前
小邸应助科研通管家采纳,获得10
35秒前
今后应助科研通管家采纳,获得10
35秒前
xftx发布了新的文献求助30
36秒前
37秒前
认真的白易完成签到,获得积分10
39秒前
39秒前
Jasper应助zwl采纳,获得10
42秒前
43秒前
49秒前
49秒前
科研通AI6应助曹能豪采纳,获得10
54秒前
丘比特应助优秀的张四月采纳,获得10
59秒前
JamesPei应助汤人雄采纳,获得10
1分钟前
李健应助CC采纳,获得10
1分钟前
李健的小迷弟应助十月采纳,获得10
1分钟前
1分钟前
Hello应助汤人雄采纳,获得10
1分钟前
1分钟前
1分钟前
WeiMooo完成签到 ,获得积分10
1分钟前
优秀的张四月完成签到,获得积分10
1分钟前
1分钟前
十月发布了新的文献求助10
1分钟前
1分钟前
自信昊强发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497