亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助30
13秒前
Raunio完成签到,获得积分10
15秒前
16秒前
33秒前
LJP发布了新的文献求助10
41秒前
Ava应助科研通管家采纳,获得10
45秒前
yuchuan应助科研通管家采纳,获得10
45秒前
yuchuan应助科研通管家采纳,获得10
45秒前
47秒前
iiii发布了新的文献求助10
53秒前
55秒前
59秒前
科研通AI6应助LJP采纳,获得10
1分钟前
1分钟前
伽古拉40k完成签到,获得积分10
1分钟前
paperandpen发布了新的文献求助10
1分钟前
MchemG完成签到,获得积分0
1分钟前
LJP完成签到,获得积分10
1分钟前
paperandpen完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
若谷叻完成签到,获得积分10
2分钟前
Chris发布了新的文献求助10
2分钟前
hll完成签到,获得积分10
2分钟前
Chris完成签到,获得积分10
2分钟前
yuchuan应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
无花果应助矮小的祥采纳,获得10
2分钟前
脑洞疼应助优美芸采纳,获得10
2分钟前
三毛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
矮小的祥发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449954
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265132
捐赠科研通 4481121
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445480
关于科研通互助平台的介绍 1421323