Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助自信不言采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助研友_nEoMy8采纳,获得10
2秒前
五花肉发布了新的文献求助10
3秒前
Sven_M完成签到,获得积分10
3秒前
3秒前
洛尚发布了新的文献求助10
4秒前
4秒前
4秒前
1111完成签到,获得积分20
4秒前
5秒前
hulahula完成签到,获得积分20
5秒前
科研通AI6应助摇光采纳,获得10
5秒前
6秒前
wangdao完成签到,获得积分10
6秒前
科研通AI6应助机智的明雪采纳,获得10
6秒前
闪闪的熠彤完成签到,获得积分10
6秒前
7秒前
遇上就这样吧应助zxy采纳,获得20
8秒前
8秒前
hulahula发布了新的文献求助10
8秒前
领导范儿应助qiny采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
追梦人完成签到 ,获得积分10
10秒前
五花肉完成签到,获得积分10
10秒前
10秒前
高贵从蕾完成签到,获得积分20
11秒前
Richard发布了新的文献求助10
11秒前
细心蚂蚁发布了新的文献求助10
11秒前
完美世界应助洛尚采纳,获得10
11秒前
乐乐应助Sunny采纳,获得10
11秒前
文静的行恶完成签到,获得积分10
12秒前
枯叶灬风发布了新的文献求助10
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443003
求助须知:如何正确求助?哪些是违规求助? 4552969
关于积分的说明 14240171
捐赠科研通 4474475
什么是DOI,文献DOI怎么找? 2452007
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418675