Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique

水准点(测量) 差异进化 计算机科学 数学优化 粒子群优化 布谷鸟搜索 进化算法 人口 元启发式 早熟收敛 最优化问题 局部搜索(优化) 还原(数学) 算法 数学 社会学 人口学 大地测量学 地理 几何学
作者
Rasel Ahmed,Gade Pandu Rangaiah,Shuhaimi Mahadzir,Seyedali Mirjalili,Mohamed H. Hassan,Salah Kamel
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:264: 110297-110297 被引量:34
标识
DOI:10.1016/j.knosys.2023.110297
摘要

Optimization of multi-modal functions is challenging even for evolutionary and swarm-based algorithms as it requires an efficient exploration for finding the promising region of the search space, and effective exploitation to precisely find the global optimum. Grey Wolf Optimizer (GWO) is a recently developed metaheuristic algorithm that is inspired by nature with a relatively small number of parameters for tuning. However, GWO and most of its variants may suffer from the lack of population diversity, premature convergence, and the inability to preserve a good balance between exploratory and exploitative behaviors. To address these limitations, this work proposes a new variant of GWO incorporating memory, evolutionary operators, and a stochastic local search technique. It further integrates Linear Population Size Reduction (LPSR) technique. The proposed algorithm is comprehensively tested on 23 numerical benchmark functions, high dimensional benchmark functions, 13 engineering case studies, four data classifications, and three function approximation problems. The benchmark functions are mostly taken from the CEC 2005 and CEC 2010 special sessions, and they include rotated, shifted functions. The engineering case studies are from the CEC 2020 real-world non-convex constrained optimization problems. The performance of the proposed GWO is compared with popular metaheuristics, namely, particle swarm optimization (PSO), gravitational search algorithm (GSA), slap swarm algorithm (SSA), differential evolution (DE), self-adaptive differential evolution (SADE), basic GWO and its three recently improved variants. Statistical analysis and Friedman tests have been conducted to thoroughly compare their performance. The obtained results demonstrate that the proposed GWO outperforms the algorithms compared for the benchmark functions and engineering case studies tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
okayyup完成签到,获得积分10
刚刚
深情安青应助激动的士萧采纳,获得10
刚刚
刚刚
自由的凡白完成签到,获得积分10
2秒前
清爽的胡萝卜完成签到 ,获得积分10
2秒前
Owen应助Acane采纳,获得10
2秒前
LYj完成签到,获得积分10
2秒前
77kk完成签到,获得积分10
3秒前
喜悦鹤轩发布了新的文献求助30
3秒前
cloudyick完成签到,获得积分10
4秒前
长也发布了新的文献求助10
4秒前
热情十三完成签到,获得积分10
4秒前
完美世界应助研友_8DWD3Z采纳,获得10
5秒前
chen完成签到,获得积分20
5秒前
lu发布了新的文献求助10
5秒前
茶叶末子发布了新的文献求助10
5秒前
温暖南莲完成签到,获得积分10
6秒前
7秒前
小陈子发布了新的文献求助10
7秒前
chen发布了新的文献求助10
7秒前
吐泡泡的奇异果完成签到,获得积分10
8秒前
可爱的函函应助Rich_WH采纳,获得10
8秒前
9秒前
kerio完成签到,获得积分20
10秒前
洁净的文涛完成签到,获得积分10
10秒前
10秒前
喜悦的冷松完成签到,获得积分10
10秒前
慕青应助sunnydog采纳,获得10
11秒前
11秒前
科研yu完成签到,获得积分10
11秒前
呆萌滑板发布了新的文献求助10
11秒前
Lucas应助法外狂徒唐老鸭采纳,获得10
11秒前
盛夏光年完成签到,获得积分10
11秒前
12秒前
黎li完成签到,获得积分10
12秒前
nnnnn完成签到,获得积分10
12秒前
sara完成签到,获得积分10
12秒前
英俊的铭应助kk采纳,获得10
13秒前
小橙完成签到,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386