Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique

水准点(测量) 差异进化 计算机科学 数学优化 粒子群优化 布谷鸟搜索 进化算法 人口 元启发式 早熟收敛 最优化问题 局部搜索(优化) 还原(数学) 算法 数学 社会学 人口学 大地测量学 地理 几何学
作者
Rasel Ahmed,Gade Pandu Rangaiah,Shuhaimi Mahadzir,Seyedali Mirjalili,Mohamed H. Hassan,Salah Kamel
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:264: 110297-110297 被引量:34
标识
DOI:10.1016/j.knosys.2023.110297
摘要

Optimization of multi-modal functions is challenging even for evolutionary and swarm-based algorithms as it requires an efficient exploration for finding the promising region of the search space, and effective exploitation to precisely find the global optimum. Grey Wolf Optimizer (GWO) is a recently developed metaheuristic algorithm that is inspired by nature with a relatively small number of parameters for tuning. However, GWO and most of its variants may suffer from the lack of population diversity, premature convergence, and the inability to preserve a good balance between exploratory and exploitative behaviors. To address these limitations, this work proposes a new variant of GWO incorporating memory, evolutionary operators, and a stochastic local search technique. It further integrates Linear Population Size Reduction (LPSR) technique. The proposed algorithm is comprehensively tested on 23 numerical benchmark functions, high dimensional benchmark functions, 13 engineering case studies, four data classifications, and three function approximation problems. The benchmark functions are mostly taken from the CEC 2005 and CEC 2010 special sessions, and they include rotated, shifted functions. The engineering case studies are from the CEC 2020 real-world non-convex constrained optimization problems. The performance of the proposed GWO is compared with popular metaheuristics, namely, particle swarm optimization (PSO), gravitational search algorithm (GSA), slap swarm algorithm (SSA), differential evolution (DE), self-adaptive differential evolution (SADE), basic GWO and its three recently improved variants. Statistical analysis and Friedman tests have been conducted to thoroughly compare their performance. The obtained results demonstrate that the proposed GWO outperforms the algorithms compared for the benchmark functions and engineering case studies tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫我少爷完成签到 ,获得积分10
1秒前
万能图书馆应助王昕钥采纳,获得10
1秒前
1秒前
龙牙完成签到,获得积分10
5秒前
怕黑的归尘关注了科研通微信公众号
5秒前
小二郎应助雪白丹亦采纳,获得10
6秒前
牛牛眉目发布了新的文献求助10
7秒前
9秒前
10秒前
Xiaoxiao应助小火苗采纳,获得10
11秒前
自由念露完成签到 ,获得积分10
11秒前
程住气完成签到 ,获得积分10
11秒前
12秒前
Aria发布了新的文献求助10
14秒前
panfan完成签到,获得积分10
15秒前
Guai完成签到,获得积分10
15秒前
卿欣完成签到 ,获得积分10
16秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
17秒前
雪白丹亦发布了新的文献求助10
18秒前
张达发布了新的文献求助10
20秒前
开放的秋玲完成签到,获得积分10
20秒前
yx_cheng应助英勇的宛筠采纳,获得10
21秒前
冷傲的电源完成签到,获得积分10
21秒前
李健应助光热效应采纳,获得10
22秒前
Xiaoxiao应助Lian采纳,获得10
22秒前
24秒前
xiaobao发布了新的文献求助10
30秒前
研友_ngkyGn应助DENG采纳,获得20
30秒前
31秒前
张达完成签到 ,获得积分20
32秒前
我不是很帅完成签到,获得积分10
33秒前
35秒前
36秒前
彪壮的机器猫完成签到 ,获得积分10
37秒前
40秒前
王二哈发布了新的文献求助10
41秒前
42秒前
42秒前
丘比特应助科研通管家采纳,获得10
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351