Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique

水准点(测量) 差异进化 计算机科学 数学优化 粒子群优化 布谷鸟搜索 进化算法 人口 元启发式 早熟收敛 最优化问题 局部搜索(优化) 还原(数学) 算法 数学 社会学 人口学 大地测量学 地理 几何学
作者
Rasel Ahmed,Gade Pandu Rangaiah,Shuhaimi Mahadzir,Seyedali Mirjalili,Mohamed H. Hassan,Salah Kamel
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:264: 110297-110297 被引量:34
标识
DOI:10.1016/j.knosys.2023.110297
摘要

Optimization of multi-modal functions is challenging even for evolutionary and swarm-based algorithms as it requires an efficient exploration for finding the promising region of the search space, and effective exploitation to precisely find the global optimum. Grey Wolf Optimizer (GWO) is a recently developed metaheuristic algorithm that is inspired by nature with a relatively small number of parameters for tuning. However, GWO and most of its variants may suffer from the lack of population diversity, premature convergence, and the inability to preserve a good balance between exploratory and exploitative behaviors. To address these limitations, this work proposes a new variant of GWO incorporating memory, evolutionary operators, and a stochastic local search technique. It further integrates Linear Population Size Reduction (LPSR) technique. The proposed algorithm is comprehensively tested on 23 numerical benchmark functions, high dimensional benchmark functions, 13 engineering case studies, four data classifications, and three function approximation problems. The benchmark functions are mostly taken from the CEC 2005 and CEC 2010 special sessions, and they include rotated, shifted functions. The engineering case studies are from the CEC 2020 real-world non-convex constrained optimization problems. The performance of the proposed GWO is compared with popular metaheuristics, namely, particle swarm optimization (PSO), gravitational search algorithm (GSA), slap swarm algorithm (SSA), differential evolution (DE), self-adaptive differential evolution (SADE), basic GWO and its three recently improved variants. Statistical analysis and Friedman tests have been conducted to thoroughly compare their performance. The obtained results demonstrate that the proposed GWO outperforms the algorithms compared for the benchmark functions and engineering case studies tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助幸福胡萝卜采纳,获得10
刚刚
刚刚
亵渎完成签到,获得积分10
刚刚
mc1220完成签到,获得积分10
1秒前
1秒前
冰刀完成签到,获得积分10
2秒前
kid1412完成签到 ,获得积分10
3秒前
LU完成签到,获得积分10
3秒前
小蘑菇应助R先生采纳,获得50
3秒前
3秒前
小嘎完成签到 ,获得积分10
4秒前
4秒前
4秒前
小虎发布了新的文献求助30
4秒前
5秒前
superworm1完成签到,获得积分10
5秒前
不懂事的小孩完成签到,获得积分10
5秒前
张瑶完成签到,获得积分10
5秒前
chloe完成签到 ,获得积分10
5秒前
桐桐应助申小萌采纳,获得10
6秒前
星星泡饭完成签到,获得积分10
6秒前
健忘曼云完成签到,获得积分10
6秒前
晶晶妹妹发布了新的文献求助10
6秒前
6秒前
通~发布了新的文献求助10
7秒前
7秒前
xiaohongmao完成签到,获得积分10
7秒前
科研通AI5应助6680668采纳,获得10
8秒前
8秒前
卡卡发布了新的文献求助10
9秒前
10秒前
欢呼鼠标发布了新的文献求助10
10秒前
appearance发布了新的文献求助10
10秒前
奋斗的凡完成签到 ,获得积分10
10秒前
ice完成签到 ,获得积分10
11秒前
junc完成签到,获得积分10
11秒前
小小完成签到,获得积分20
11秒前
13秒前
14秒前
R先生完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762