Customer-Centered Pricing Strategy Based on Privacy-Preserving Load Disaggregation

需求响应 利润(经济学) 计算机科学 智能电网 电价 负荷管理 可再生能源 动态定价 运筹学 电力市场 数学优化 业务 微观经济学 经济 工程类 营销 电气工程 数学
作者
Yuechuan Tao,Jing Qiu,Shuying Lai,Xianzhuo Sun,Yuan Ma,Junhua Zhao
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3401-3412
标识
DOI:10.1109/tsg.2023.3238029
摘要

Demand response (DR) is a demand reduction or shift of electricity use by customers to make electricity systems flexible and reliable, which is beneficial under increasing shares of intermittent renewable energy. For residential loads, thermostatically controlled loads (TCLs) are considered as major DR resources. In a price-based DR program, an aggregation agent, such as a retailer, formulates price signals to stimulate the customers to change electricity usage patterns. The conventional DR management methods fully rely on mathematical models to describe the customer’s price responsiveness. However, it is difficult to fully master the customers’ detailed demand elasticities, cost functions, and utility functions in practice. Hence, in this paper, we proposed a data-driven non-intrusive load monitoring (NILM) approach to study the customers’ power consumption behaviors and usage characteristics. Based on NILM, the DR potential of the TCLs can be properly estimated, which assists the retailer in formulating a proper pricing strategy. To realize privacy protection, a privacy-preserving NILM algorithm is proposed. The proposed methodologies are verified in case studies. It is concluded that the proposed NILM algorithm not only reaches a better prediction performance than state-of-art works but also can protect privacy by slightly sacrificing accuracy. The DR pricing strategy with NILM integrated brings more profit and lower risks to the retailer, whose results are close to the fully model-based method with strong assumptions. Furthermore, a NILM algorithm with higher performance can help the retailer earn more benefits and help the grids better realize DR requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
刚刚
吴垚发布了新的文献求助10
刚刚
大模型应助69采纳,获得10
刚刚
p454q完成签到 ,获得积分10
1秒前
雨晴完成签到,获得积分10
2秒前
与我发布了新的文献求助10
2秒前
刘小瑞发布了新的文献求助10
2秒前
3秒前
4秒前
麻师长发布了新的文献求助10
4秒前
4秒前
JV发布了新的文献求助10
4秒前
宋十一发布了新的文献求助10
4秒前
5秒前
pinkbubble发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
7秒前
柠檬完成签到,获得积分10
7秒前
hehe完成签到,获得积分20
8秒前
您好完成签到,获得积分20
8秒前
田峰潇关注了科研通微信公众号
8秒前
淡定乐荷发布了新的文献求助10
9秒前
9秒前
wangjiewen1109完成签到,获得积分10
9秒前
ChenK完成签到,获得积分10
9秒前
薏晓发布了新的文献求助10
9秒前
科研通AI6应助lomnn采纳,获得10
9秒前
大意的映天完成签到 ,获得积分10
9秒前
Ava应助魏你大爷采纳,获得10
9秒前
可爱的函函应助度度采纳,获得10
10秒前
zanyez发布了新的文献求助10
10秒前
10秒前
10秒前
大兵哥完成签到 ,获得积分10
10秒前
11秒前
11秒前
云边小卖部完成签到,获得积分10
12秒前
积极钧发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705