Customer-Centered Pricing Strategy Based on Privacy-Preserving Load Disaggregation

需求响应 利润(经济学) 计算机科学 智能电网 电价 负荷管理 可再生能源 动态定价 运筹学 电力市场 数学优化 业务 微观经济学 经济 工程类 营销 数学 电气工程
作者
Yuechuan Tao,Jing Qiu,Shuying Lai,Xianzhuo Sun,Yuan Ma,Junhua Zhao
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3401-3412
标识
DOI:10.1109/tsg.2023.3238029
摘要

Demand response (DR) is a demand reduction or shift of electricity use by customers to make electricity systems flexible and reliable, which is beneficial under increasing shares of intermittent renewable energy. For residential loads, thermostatically controlled loads (TCLs) are considered as major DR resources. In a price-based DR program, an aggregation agent, such as a retailer, formulates price signals to stimulate the customers to change electricity usage patterns. The conventional DR management methods fully rely on mathematical models to describe the customer’s price responsiveness. However, it is difficult to fully master the customers’ detailed demand elasticities, cost functions, and utility functions in practice. Hence, in this paper, we proposed a data-driven non-intrusive load monitoring (NILM) approach to study the customers’ power consumption behaviors and usage characteristics. Based on NILM, the DR potential of the TCLs can be properly estimated, which assists the retailer in formulating a proper pricing strategy. To realize privacy protection, a privacy-preserving NILM algorithm is proposed. The proposed methodologies are verified in case studies. It is concluded that the proposed NILM algorithm not only reaches a better prediction performance than state-of-art works but also can protect privacy by slightly sacrificing accuracy. The DR pricing strategy with NILM integrated brings more profit and lower risks to the retailer, whose results are close to the fully model-based method with strong assumptions. Furthermore, a NILM algorithm with higher performance can help the retailer earn more benefits and help the grids better realize DR requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
隐形曼青应助烩面大师采纳,获得10
刚刚
刚刚
默然的歌完成签到 ,获得积分10
刚刚
CTL发布了新的文献求助10
1秒前
1秒前
1秒前
大鹏完成签到,获得积分10
1秒前
1秒前
1秒前
congguitar发布了新的文献求助10
2秒前
CodeCraft应助韭黄采纳,获得10
2秒前
2秒前
小月发布了新的文献求助10
2秒前
香蕉觅云应助学渣向下采纳,获得10
3秒前
3秒前
YML完成签到,获得积分10
4秒前
荣安安完成签到,获得积分10
4秒前
啦某某完成签到,获得积分10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
zhenzhen发布了新的文献求助10
5秒前
fang发布了新的文献求助10
5秒前
chengyulin完成签到 ,获得积分10
5秒前
孙二二发布了新的文献求助10
5秒前
小二郎应助SY采纳,获得10
6秒前
Akim应助顺心的惜蕊采纳,获得10
7秒前
7秒前
berry完成签到,获得积分20
8秒前
康小郁完成签到,获得积分10
8秒前
快乐友灵完成签到,获得积分10
8秒前
9秒前
群木成林完成签到,获得积分10
9秒前
小白一号完成签到 ,获得积分10
9秒前
Cynthia完成签到 ,获得积分10
9秒前
李惊鸿完成签到,获得积分10
9秒前
9秒前
9秒前
愤怒的子骞完成签到,获得积分10
10秒前
Emilia完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759