清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How the interactions between atmospheric and soil drought affect the functionality of plant hydraulics

木质部 蒸腾作用 导水率 蒸汽压差 气孔导度 土壤水分 环境科学 植物 光合作用 水青冈 化学 农学 土壤科学 生物 山毛榉
作者
Gaochao Cai,Fabian Wankmüller,Mutez Ali Ahmed,Andrea Carminati
出处
期刊:Plant Cell and Environment [Wiley]
卷期号:46 (3): 733-735 被引量:1
标识
DOI:10.1111/pce.14538
摘要

Rising temperature and vapor pressure deficit (VPD) are predicted to increase transpiration demand and to cause a decline in stomatal conductance and photosynthesis (Novick et al., 2016). To avoid excessive drops in leaf water potential, plants downregulate water use by reducing stomatal conductance. Typically, stomatal closure anticipates hydraulic failure of the xylem, with the leaf water potentials at which stomata close being less negative than those at which the xylem cavitates (Anderegg et al., 2017). The coordination between stomatal closure and hydraulic limitations is a well-accepted principle of plant water relations (Sperry et al., 2017). Yet, it is not clear which hydraulic element of the soil−plant continuum is the primary limit to transpiration. Recent experimental findings indicated that outer-xylem tissues (Albuquerque et al., 2020) and the root−soil interface (Abdalla et al., 2022; Rodriguez-Dominguez & Brodribb, 2019) have a controlling role on stomatal regulation. Carminati and Javaux (2020) proposed that the loss of soil hydraulic conductivity is the first trigger of stomatal closure. The recent paper by Schönbeck et al. (2022) investigated the effect of rising VPD and temperature on plant hydraulics. The authors observed that VPD and temperature led to losses in stem hydraulic conductivity independently from soil drought. They examined young trees (3 years old) of Fagus sylvatica L., Quercus pubescens Willd, and Quercus ilex L. and evaluated the responses of multiple hydraulic and physiological traits to increasing VPD and temperature. Significant losses in stem xylem hydraulic conductivity, up to about 75% in F. sylvatica and Q. pubescens, were observed. The authors concluded that ‘VPD and temperature can cause major hydraulic dysfunctions’ (Schönbeck et al., 2022). Schönbeck et al. (2022) highlighted that the observations of xylem hydraulic damage were found ‘without soil drought’. Indeed, in their study there was no decline in soil−plant hydraulic conductance, and presumably neither xylem embolism nor partial soil drying limited transpiration. Therefore, it is reasonable to assess their environmental conditions as ‘without soil drought’. Yet, we would like to raise the general issue that defining soil drought is not obvious. A plausible definition of soil drought is related to the inability of the soil water supply to sustain the transpiration demand. Note that such definition is pertinent to plant water use regulation, rather than to irreversible hydraulic failure. Soil limiting conditions for plant water uptake and transpiration rate can occur at relatively high soil water potentials, when large gradients in water potential develop around the roots when soil water flow becomes limiting. For instance, Cai et al. (2022) reported that in sandy soils, the soil became limiting already at water potentials of −0.01 MPa due to the extremely steep hydraulic conductivity curves of coarse textured soils, while in fine-textured soils, which have a less steep hydraulic conductivity curve, the limiting soil water potential was around −0.1 MPa (Figure 1g). These values are higher than the reported predawn leaf water potentials observed by Schönbeck et al. (2022) (see Figure 4 in Schönbeck et al. [2022]), which were around −0.5 MPa (assuming that predawn leaf water potential approached the soil water potential), and in general are higher than those often used in studies on plant water relations during drought. Therefore, we can expect transpiration limitations also in soils that would one would consider ‘relatively wet’. Note that these soil water potential thresholds refer to stomatal closure and not to irreversible hydraulic failure, which occur at more negative potentials. While the results by Schönbeck et al. (2022) enable us to rank the effects of VPD, temperature and soil drought on plant hydraulic responses, which is definitely important, in this commentary we advocate for the importance of evaluating the interactions between atmospheric and soil drought. The reason is that the effects of VPD and temperature become increasingly and nonlinearly larger as the soil dries, given that rising VPD and temperature cause an increase in transpiration rate. This is true until stomatal closure prevents the increase in transpiration, which comes at the cost of reduced photosynthesis. In this sense, the effect of VPD on photosynthesis increases as the soil dries. Figure 1g−i shows that the deviation of midday leaf water potential from the predawn leaf water potential is a function of transpiration rate (dark blue to yellow) and soil water potential (which decreases with decreasing predawn leaf water potential). The figure is drawn from Schönbeck et al., 2022 (Figure 1g) and Cai et al. (2022, Figure 1h−i). It shows that the loss in midday leaf water potential for a given transpiration rate becomes larger as the soil dries. In other words, the effects of VPD and temperature on the soil-plant hydraulic system are exacerbated by soil drying. In summary, Schönbeck et al. (2022) importantly disentangled the effects of rising VPD and temperature on plant hydraulics and showed that they can induce substantial loss of stem xylem hydraulic conductivity. Moreover, their observations indicate that a loss of conductance within one part of the soil-plant continuum (i.e., stem xylem) does not automatically imply a loss of conductance of the entire water transport system. This commentary aims therefore at emphasizing the importance of studying the entire soil−plant hydraulic system. Finally, we advocate for giving more emphasis to the interactions between VPD (and temperature) and soil drying, as the effects of VPD and temperature become increasingly important with soil drying. The authors declare no conflict of interest. Open access funding provided by Eidgenossische Technische Hochschule Zurich.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟲先生完成签到 ,获得积分10
4秒前
17秒前
sailingluwl完成签到,获得积分10
30秒前
喝酸奶不舔盖完成签到 ,获得积分10
1分钟前
无心的秋珊完成签到 ,获得积分10
1分钟前
1分钟前
bestbanana发布了新的文献求助10
1分钟前
bestbanana完成签到,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
JJ完成签到 ,获得积分10
2分钟前
迈克老狼完成签到 ,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
聪明的云完成签到 ,获得积分10
2分钟前
loga80完成签到,获得积分0
2分钟前
独步出营完成签到 ,获得积分10
2分钟前
2分钟前
皮老师发布了新的文献求助50
3分钟前
我有一只猫完成签到 ,获得积分10
3分钟前
狞猰应助卡卡罗特先森采纳,获得10
3分钟前
玲家傻妞完成签到 ,获得积分10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
xiaogang127完成签到 ,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
包子牛奶完成签到,获得积分10
4分钟前
digger2023完成签到 ,获得积分10
5分钟前
脑洞疼应助Royal采纳,获得10
5分钟前
John发布了新的文献求助10
5分钟前
昭荃完成签到 ,获得积分10
5分钟前
深情安青应助喜洋洋采纳,获得10
6分钟前
6分钟前
迷人的沛山完成签到 ,获得积分10
6分钟前
开心每一天完成签到 ,获得积分10
7分钟前
喜洋洋发布了新的文献求助10
7分钟前
tao完成签到 ,获得积分10
8分钟前
imi完成签到 ,获得积分10
8分钟前
Royal完成签到,获得积分10
8分钟前
井小浩完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999